2011 Volume 1 Issue 1
Article Contents

Junping Shi, Zhifu Xie, Kristina Little. CROSS-DIFFUSION INDUCED INSTABILITY AND STABILITY IN REACTION-DIFFUSION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 95-119. doi: 10.11948/2011007
Citation: Junping Shi, Zhifu Xie, Kristina Little. CROSS-DIFFUSION INDUCED INSTABILITY AND STABILITY IN REACTION-DIFFUSION SYSTEMS[J]. Journal of Applied Analysis & Computation, 2011, 1(1): 95-119. doi: 10.11948/2011007

CROSS-DIFFUSION INDUCED INSTABILITY AND STABILITY IN REACTION-DIFFUSION SYSTEMS

  • Fund Project:
  • In a reaction-difiusion system, difiusion can induce the instability of a uniform equilibrium which is stable with respect to a constant perturbation, as shown by Turing in 1950s. We show that cross-difiusion can destabilize a uniform equilibrium which is stable for the kinetic and self-difiusion reaction systems; on the other hand, cross-difiusion can also stabilize a uniform equilibrium which is stable for the kinetic system but unstable for the selfdifiusion reaction system. Application is given to predator-prey system with preytaxis and vegetation pattern formation in a water-limited ecosystem.
    MSC: 92C15;35K57;37L15;92D40
  • 加载中
  • [1] Y. S. Choi, Roger Lui and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-difiusion, Discrete Contin. Dyn. Syst., 9(2003), 1193-1200.

    Google Scholar

    [2] Y. S. Choi, Roger Lui and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-difiusion, Discrete Contin. Dyn. Syst., 10(2004), 719-730.

    Google Scholar

    [3] Rui Dilão, Turing instabilities and patterns near a Hopf bifurcation, Appl. Math. Comput., 164(2005), 391-414.

    Google Scholar

    [4] Leah Edelstein-Keshet, Mathematical models in biology, The Random House/Birkhäuser Mathematics Series, Random House, Inc., New York, 1988.

    Google Scholar

    [5] M. Farkas, Two ways of modelling cross-difiusion. Proceedings of the Second World Congress of Nonlinear Analysts, Part 2(Athens, 1996), Nonlinear Anal., 30(1997), 1225-1233.

    Google Scholar

    [6] Peter Kareiva and Garrett Odell, Swarms of Predators Exhibit "Preytaxis " if Individual Predators Use Area-Restricted Search, Amer. Naturalist, 130(1987), 233-270.

    Google Scholar

    [7] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Jour. Theor. Biol., 26(1970), 399-415.

    Google Scholar

    [8] E. F. Keller and L. A. Segel, Model for chemotaxis, Jour. Theor. Biol., 30(1971), 225-234.

    Google Scholar

    [9] Sándor Kovàcs, Turing bifurcation in a system with cross difiusion, Nonlinear Anal., 59(2004), 567-581.

    Google Scholar

    [10] Kousuke Kuto and Yoshio Yamada, Multiple coexistence states for a preypredator system with cross-difiusion, J. Difierential Equations, 197(2004), 315-348.

    Google Scholar

    [11] Dung Le, Cross difiusion systems on n spatial dimensional domains, Indiana Univ. Math. J., 51(2002), 625-643.

    Google Scholar

    [12] Dung Le, Global existence for a class of strongly coupled parabolic systems, Ann. Mat. Pura Appl., 185(2006), 133-154.

    Google Scholar

    [13] Yi Li and Chunshan Zhao, Global existence of solutions to a cross-difiusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12(2005), 185-192.

    Google Scholar

    [14] Yuan Lou and Wei-Ming Ni, Difiusion, self-difiusion and cross-difiusion, J. Difierential Equations, 131(1996), 79-131.

    Google Scholar

    [15] Yuan Lou and Wei-Ming Ni, Difiusion vs cross-difiusion:an elliptic approach, J. Difierential Equations, 154(1999), 157-190.

    Google Scholar

    [16] Yuan Lou, Wei-Ming Ni and Yaping Wu, On the global existence of a crossdifiusion system, Discrete Contin. Dynam. Systems, 4(1998), 193-203.

    Google Scholar

    [17] E. Meron, E. Gilad, J. von Hardenberg and M. Shachak, Zarmi, Y., Vegetation Patterns along a rainfall gradient, Chaos Solitons Fractals, 19(2004), 367-376.

    Google Scholar

    [18] J. D. Murray, Mathematical biology, Third edition. I. An introduction. Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002; Ⅱ. Spatial models and biomedical applications, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.

    Google Scholar

    [19] Kimie Nakashima and Yoshio Yamada, Positive steady states for prey-predator models with cross-difiusion, Adv. Difierential Equations, 1(1996), 1099-1122.

    Google Scholar

    [20] Wei-Ming Ni, Difiusion, cross-difiusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45(1998), 9-18.

    Google Scholar

    [21] Max Rietkerk, Stefan C. Dekker, Peter C. de Ruiter and Johan van de Koppel, Self-Organized Patchiness and Catastrophic Shifts in Ecosystems, Science, 305(2004), 1926-1929.

    Google Scholar

    [22] Kimun Ryu and Inkyung Ahn, Positive steady-states for two interacting species models with linear self-cross difiusions, Discrete Contin. Dyn. Syst., 9(2003), 1049-1061.

    Google Scholar

    [23] Razvan A. Satnoianu, Michael Menzinger and Philip K. Maini, Turing instabilities in general systems, J. Math. Biol., 41(2000), 493-512.

    Google Scholar

    [24] Marten Schefier, Steve Carpenter, Jonathan A. Foley, Carl Folke, and Brian Walkerk, Catastrophic shifts in ecosystems, Nature, 413(2001), 591-596.

    Google Scholar

    [25] L.A. Segel and J.L. Jackson, Dissipative structure:An explaination and an ecological example, J. Theor. Biol., 37(1972), 545-559.

    Google Scholar

    [26] Junping Shi, Bifurcation in inflnite dimensional spaces and applications in spatiotemporal biological and chemical models, Front. Math. China, 4(2009), 407-424.

    Google Scholar

    [27] Junping Shi and Xuefeng Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Difierential Equations, 246(2009), 2788-2812.

    Google Scholar

    [28] Nanako Shigesada, Kohkichi Kawasaki and Teramoto, Ei, Spatial segregation of interacting species, J. Theoret. Biol., 79(1979), 83-99.

    Google Scholar

    [29] Phan Van Tuoc Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-difiusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 135(2007), 3933-3941.

    Google Scholar

    [30] Phan Van Tuoc, On global existence of solutions to a cross-difiusion system, J. Math. Anal. Appl., 343(2008), 826-834.

    Google Scholar

    [31] A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, B237(1952), 37-2.

    Google Scholar

    [32] J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of Vegetation Patterns and Desertiflcation, Phys. Rev. Lett., 87(2001), 198101.

    Google Scholar

    [33] Xuefeng Wang, Qualitative behavior of solutions of chemotactic difiusion systems:efiects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31(2000), 535-560.

    Google Scholar

Article Metrics

Article views(2675) PDF downloads(1672) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint