[1]
|
Y. S. Choi, Roger Lui and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-difiusion, Discrete Contin. Dyn. Syst., 9(2003), 1193-1200.
Google Scholar
|
[2]
|
Y. S. Choi, Roger Lui and Yoshio Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-difiusion, Discrete Contin. Dyn. Syst., 10(2004), 719-730.
Google Scholar
|
[3]
|
Rui Dilão, Turing instabilities and patterns near a Hopf bifurcation, Appl. Math. Comput., 164(2005), 391-414.
Google Scholar
|
[4]
|
Leah Edelstein-Keshet, Mathematical models in biology, The Random House/Birkhäuser Mathematics Series, Random House, Inc., New York, 1988.
Google Scholar
|
[5]
|
M. Farkas, Two ways of modelling cross-difiusion. Proceedings of the Second World Congress of Nonlinear Analysts, Part 2(Athens, 1996), Nonlinear Anal., 30(1997), 1225-1233.
Google Scholar
|
[6]
|
Peter Kareiva and Garrett Odell, Swarms of Predators Exhibit "Preytaxis " if Individual Predators Use Area-Restricted Search, Amer. Naturalist, 130(1987), 233-270.
Google Scholar
|
[7]
|
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Jour. Theor. Biol., 26(1970), 399-415.
Google Scholar
|
[8]
|
E. F. Keller and L. A. Segel, Model for chemotaxis, Jour. Theor. Biol., 30(1971), 225-234.
Google Scholar
|
[9]
|
Sándor Kovàcs, Turing bifurcation in a system with cross difiusion, Nonlinear Anal., 59(2004), 567-581.
Google Scholar
|
[10]
|
Kousuke Kuto and Yoshio Yamada, Multiple coexistence states for a preypredator system with cross-difiusion, J. Difierential Equations, 197(2004), 315-348.
Google Scholar
|
[11]
|
Dung Le, Cross difiusion systems on n spatial dimensional domains, Indiana Univ. Math. J., 51(2002), 625-643.
Google Scholar
|
[12]
|
Dung Le, Global existence for a class of strongly coupled parabolic systems, Ann. Mat. Pura Appl., 185(2006), 133-154.
Google Scholar
|
[13]
|
Yi Li and Chunshan Zhao, Global existence of solutions to a cross-difiusion system in higher dimensional domains, Discrete Contin. Dyn. Syst., 12(2005), 185-192.
Google Scholar
|
[14]
|
Yuan Lou and Wei-Ming Ni, Difiusion, self-difiusion and cross-difiusion, J. Difierential Equations, 131(1996), 79-131.
Google Scholar
|
[15]
|
Yuan Lou and Wei-Ming Ni, Difiusion vs cross-difiusion:an elliptic approach, J. Difierential Equations, 154(1999), 157-190.
Google Scholar
|
[16]
|
Yuan Lou, Wei-Ming Ni and Yaping Wu, On the global existence of a crossdifiusion system, Discrete Contin. Dynam. Systems, 4(1998), 193-203.
Google Scholar
|
[17]
|
E. Meron, E. Gilad, J. von Hardenberg and M. Shachak, Zarmi, Y., Vegetation Patterns along a rainfall gradient, Chaos Solitons Fractals, 19(2004), 367-376.
Google Scholar
|
[18]
|
J. D. Murray, Mathematical biology, Third edition. I. An introduction. Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002; Ⅱ. Spatial models and biomedical applications, Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003.
Google Scholar
|
[19]
|
Kimie Nakashima and Yoshio Yamada, Positive steady states for prey-predator models with cross-difiusion, Adv. Difierential Equations, 1(1996), 1099-1122.
Google Scholar
|
[20]
|
Wei-Ming Ni, Difiusion, cross-difiusion, and their spike-layer steady states, Notices Amer. Math. Soc., 45(1998), 9-18.
Google Scholar
|
[21]
|
Max Rietkerk, Stefan C. Dekker, Peter C. de Ruiter and Johan van de Koppel, Self-Organized Patchiness and Catastrophic Shifts in Ecosystems, Science, 305(2004), 1926-1929.
Google Scholar
|
[22]
|
Kimun Ryu and Inkyung Ahn, Positive steady-states for two interacting species models with linear self-cross difiusions, Discrete Contin. Dyn. Syst., 9(2003), 1049-1061.
Google Scholar
|
[23]
|
Razvan A. Satnoianu, Michael Menzinger and Philip K. Maini, Turing instabilities in general systems, J. Math. Biol., 41(2000), 493-512.
Google Scholar
|
[24]
|
Marten Schefier, Steve Carpenter, Jonathan A. Foley, Carl Folke, and Brian Walkerk, Catastrophic shifts in ecosystems, Nature, 413(2001), 591-596.
Google Scholar
|
[25]
|
L.A. Segel and J.L. Jackson, Dissipative structure:An explaination and an ecological example, J. Theor. Biol., 37(1972), 545-559.
Google Scholar
|
[26]
|
Junping Shi, Bifurcation in inflnite dimensional spaces and applications in spatiotemporal biological and chemical models, Front. Math. China, 4(2009), 407-424.
Google Scholar
|
[27]
|
Junping Shi and Xuefeng Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Difierential Equations, 246(2009), 2788-2812.
Google Scholar
|
[28]
|
Nanako Shigesada, Kohkichi Kawasaki and Teramoto, Ei, Spatial segregation of interacting species, J. Theoret. Biol., 79(1979), 83-99.
Google Scholar
|
[29]
|
Phan Van Tuoc Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-difiusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 135(2007), 3933-3941.
Google Scholar
|
[30]
|
Phan Van Tuoc, On global existence of solutions to a cross-difiusion system, J. Math. Anal. Appl., 343(2008), 826-834.
Google Scholar
|
[31]
|
A.M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, B237(1952), 37-2.
Google Scholar
|
[32]
|
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of Vegetation Patterns and Desertiflcation, Phys. Rev. Lett., 87(2001), 198101.
Google Scholar
|
[33]
|
Xuefeng Wang, Qualitative behavior of solutions of chemotactic difiusion systems:efiects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31(2000), 535-560.
Google Scholar
|