2011 Volume 1 Issue 3
Article Contents

Xianyun Du. RANDOM ATTRACTOR OF NONLINEAR STRAIN WAVES WITH WHITE NOISE[J]. Journal of Applied Analysis & Computation, 2011, 1(3): 361-372. doi: 10.11948/2011025
Citation: Xianyun Du. RANDOM ATTRACTOR OF NONLINEAR STRAIN WAVES WITH WHITE NOISE[J]. Journal of Applied Analysis & Computation, 2011, 1(3): 361-372. doi: 10.11948/2011025

RANDOM ATTRACTOR OF NONLINEAR STRAIN WAVES WITH WHITE NOISE

  • Fund Project:
  • In this paper, we consider the long time behaviors of nonlinear strain waves in elastic waveguides with white noise. We show that the initial boundary value problem has a global solution and a compact global attractor.
    MSC: 38B41;38B40
  • 加载中
  • [1] L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.

    Google Scholar

    [2] Peter W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246(2009), 845-869.

    Google Scholar

    [3] T. Caraballo, J.A. Langa and J.C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, Proc. R. Soc. Lond. Ser. A, 457(2001), 2041-2061.

    Google Scholar

    [4] H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9(1997), 307-341.

    Google Scholar

    [5] Z. Dai and B. Guo, Long Time Bahavior of Nonlinear Strain Waves in Elastic Waveguides, J.Partial Diff. Eqs., 12:4(1999), 301-312.

    Google Scholar

    [6] Z. Dai and X. Du, Global attractor for the nonlinear strain waves in elastic waveguides, Acta mathematicae applicatae sinica, 17:2(2001), 260-270.

    Google Scholar

    [7] A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77(1998), 967-988.

    Google Scholar

    [8] K. Deimling, Nonlinear functional analyis, Springer, Berlin, 1985.

    Google Scholar

    [9] F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic NavierStokes equation with multiplicative noise, Stoch. Stoch. Rep., 59(1996), 21-45.

    Google Scholar

    [10] Y. Li and B. Guo, Random attractor for quasi-continous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Differential Equations, 245(2008), 1175-1800.

    Google Scholar

    [11] Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244(2008), 1-23.

    Google Scholar

    [12] G A. Mangin, Physical and mathematical models of nonlinear waves in solids, Jeffrey, Engelbrecht eds, Amsterdam et al., Elsevier, 1994.

    Google Scholar

    [13] A. M. Samsonov and E V. Sokurinskaya,Energy exchange between nonlinear wave in elastic waveguides and extern media, Nonlinear wave in Active amedia, Springer-Verlag, Berlin, 1989.

    Google Scholar

    [14] A. M. Samsonov, Nonlinear strain wave in elastic waveguides, Nonlinear Waves in Solids A, Jeffrey, J Engelbrecht, 1994.

    Google Scholar

    [15] A. M. Samsonov and E V. Sokurinkaya, On the excitation of a longitudinal deformation soliton in a nonlinear elastic rod, Sov Phys-TechPhys, 33:8(1988), 989-991.

    Google Scholar

    [16] M. Scheutzow,Comparison of various concepts of a random attractor:A case study, Arch. Math. (Basel), 78(2002), 233-240.

    Google Scholar

    [17] S. Zhou, On dimension of the global attractor for damped nonlinear wave equations, J. Math. Phys., 40(1999), 1432-1438.

    Google Scholar

    [18] R. Temam, Infinite-Dimensional Systems in Mechanics and Physics, New York, Springer-Verlag, 1988.

    Google Scholar

    [19] J.M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Differential Equations, 110(1994), 356-359.

    Google Scholar

Article Metrics

Article views(1427) PDF downloads(571) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint