[1]
|
L. Arnold, Random Dynamical Systems, Springer-Verlag, 1998.
Google Scholar
|
[2]
|
P. W. Bates, Kening Lu and Bixiang Wang, Random attractors for stochastic reactiondiffusion equations on unbounded domains, J. Differential Equations, 246(2009), 845-869.
Google Scholar
|
[3]
|
J. Bell, Some threshold results for models of myelinated nerves, Math. Biosic., 54(1981), 181-190.
Google Scholar
|
[4]
|
A. R. Bernal and B. Wang, Attractors for partly disspative reaction diffussion systems in Rn, J. Math. Anal. Appl., 252(2000), 790-803.
Google Scholar
|
[5]
|
T. Caraballo, J.A. Langa and J.C. Robinson, A stochastic pitchfork bifurcation in a reaction-diffusion equation, Proc. R. Soc. Lond. Ser. A, 457(2001), 2041-2061.
Google Scholar
|
[6]
|
H. Crauel, A. Debussche and F. Flandoli, Random attractors, J. Dynam. Differential Equations, 9(1997), 307-341.
Google Scholar
|
[7]
|
A. Debussche, Hausdorff dimension of a random invariant set, J. Math. Pures Appl., 77(1998), 967-988.
Google Scholar
|
[8]
|
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1(1961), 445-466.
Google Scholar
|
[9]
|
F. Flandoli and B. Schmalfu, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise, Stoch. Stoch. Rep., 59(1996), 21-45.
Google Scholar
|
[10]
|
J. M. Ghidaglia, A note on the strong convergence towards attractors for damped forced KdV equations, J. Differential Equations, 110(1994), 356-359.
Google Scholar
|
[11]
|
X. J. Li and C. K. Zhong, Attractors for partly dissipative lattice dynamic systems in l2×l2, J. Comput. Appl. Math., 177(2005), 159-174.
Google Scholar
|
[12]
|
X. Li and D. Wang, Attractors for partly dissipative lattice dynamic systems in weighted spaces, J. Math. Anal. Appl., 325(2007), 141-156.
Google Scholar
|
[13]
|
Y. Lv and W. Wang, Limiting dynamics for stochastic wave equations, J. Differential Equations, 244(2008), 1-23.
Google Scholar
|
[14]
|
M. Marion, Finite-dimensional attractors associated with partly dissipative reactiondiffusion system, SIAM J. Math. Anal., 20(1989), 816-844.
Google Scholar
|
[15]
|
M.Marion, Inertial manifolds associated to partly dissipative reaction-diffusion systems, J. Math. Anal.Appl., 143(1989), 295-326.
Google Scholar
|
[16]
|
J. Nagumo, S. Arimoto and S. Yosimzawa, An active pulse transmission line simulating nerve axon, Proc. J. R. E., 50(1964), 2061-2070.
Google Scholar
|
[17]
|
M. Scheutzow, Comparison of various concepts of a random attractor:A case study, Arch. Math. (Basel), 78(2002), 233-240.
Google Scholar
|
[18]
|
Z. Shao, Existence of inertial manifolds for partly dissipative reaction diffussion systems in higher space dimensions, J Differential Equations., 144(1998), 1-43.
Google Scholar
|
[19]
|
R.Temam, Infinite-Dimensional Systems in Mechanics and Physics, New York:Springer-Verlag, 1988.
Google Scholar
|
[20]
|
Y. Wang, Y. Liu and Z. Wang, Random attractors for the partly dissipative stochastic lattice dynamical system, J. Diff. Equ. Appl., 8(2008), 799-817.
Google Scholar
|