R. Cipolatti, I-Shih Liu, M. A. Rincon. MATHEMATICAL ANALYSIS OF SUCCESSIVE LINEAR APPROXIMATION FOR MOONEY-RIVLIN MATERIAL MODEL IN FINITE ELASTICITY[J]. Journal of Applied Analysis & Computation, 2012, 2(4): 363-379. doi: 10.11948/2012027
Citation: |
R. Cipolatti, I-Shih Liu, M. A. Rincon. MATHEMATICAL ANALYSIS OF SUCCESSIVE LINEAR APPROXIMATION FOR MOONEY-RIVLIN MATERIAL MODEL IN FINITE ELASTICITY[J]. Journal of Applied Analysis & Computation, 2012, 2(4): 363-379. doi: 10.11948/2012027
|
MATHEMATICAL ANALYSIS OF SUCCESSIVE LINEAR APPROXIMATION FOR MOONEY-RIVLIN MATERIAL MODEL IN FINITE ELASTICITY
-
1 Instituto de Matemática, Universidade Federal do Rio de Janeiro, CP. 68530, 21945-970, Rio de Janeiro, Brasil;
-
2 Dep. Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brasil
-
Abstract
For calculating large deformations of solid bodies, we have proposed a method of successive linear approximation, by considering the relative Lagrangian formulation. In this article we briefly describe this method, which is applied for nearly incompressible Mooney-Rivlin materials. We prove the existence and uniqueness of weak solutions for associated boundary value problems that arise in each step of the method. In our analysis we consider also a non-standard case, where the coefficients present in the constitutive function of Mooney-Rivlin materials do not satisfy the usual E-inequalities.
-
-
References
[1]
|
P.G. Ciarlet, Mathematical elasticity, Volume 1:Three-dimensional elasticity, North-Holland, Amsterdam, 1988.
Google Scholar
|
[2]
|
A.E. Green, R.S. Rivlin and R.T. Shield, General theory of small elastic deformations, Pro. Roy. Soc. London, Ser. A, 211, (1952), 128-154.
Google Scholar
|
[3]
|
P. Haupt, Continuum mechanics and theory of materials, Second Edition, Springer, 2002.
Google Scholar
|
[4]
|
I-S. Liu, Continuum mechanics, Springer, Berlin Heidelberg, 2002.
Google Scholar
|
[5]
|
I-S. Liu, Successive linear approximation for boundary value problems of nonlinear elasticity in relative-descriptional formulation, Int. J. Eng. Sci., doi:10.1016/j.ijengsci.2011.02.006, 2011.
Google Scholar
|
[6]
|
I-S. Liu, A note on Mooney-Rivlin material model, continuum mechanics and thermodynamics, doi:10.1007/s000161-011-0197-6, 2011.
Google Scholar
|
[7]
|
I-S. Liu, R. Cipolatti and M.A. Rincon, Successive linear approximation for finite elasticity, Computational and Applied Mathematics, 3(2010), 465-478.
Google Scholar
|
[8]
|
I-S. Liu, R. Cipolatti, M.A. Rincon and L.A. Palermo, Numerical simulation of salt migration-Large deformation in viscoelastic solid bodies, (submitted) arXiv:1108.2295.
Google Scholar
|
[9]
|
R.W. Ogden, Non-linear elastic deformations, Ellis Horwood, New York, 1984.
Google Scholar
|
[10]
|
R. Temam, Navier-Stokes equations, theory and numerical analysis, AMS Chelsea Publishing, 2000.
Google Scholar
|
[11]
|
R. Temam and A. Miranville, Mathematical modeling in continuum mechanics, Cambridge University Press, 2001.
Google Scholar
|
[12]
|
C. Truesdell and W. Noll, The non-linear field theories of mechanics, third ed., Springer, Berlin, 2004.
Google Scholar
|
-
-
-