[1]
|
D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology., 83(2002), 28-34.
Google Scholar
|
[2]
|
Shaban Aly, Imbunm Kim and Dongwoo Sheen, Turing instability for a ratiodependent predator-prey model with diffusion, Appl. Math. Comput, 217(2011), 7265-7281.
Google Scholar
|
[3]
|
M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predatorprey model, Math. Comput. Modelling, 51(2010), 44-52.
Google Scholar
|
[4]
|
F. Bartumeus, D. Alonso and J. Catalan, Self-organized spatial structures in a ratio-dependent predator-prey model, Physica A, 295(2001), 53-57.
Google Scholar
|
[5]
|
Martin Baurmann, Thilo Gross and Ulrike Feudel, Instabilities in spatially extended predator-prey systems:Spatiotemporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theor. Biol, 245(2007), 220-229.
Google Scholar
|
[6]
|
J.M. Chung and E. Peacock-Lpez, Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion, J. Chem. Phys, 127(2007), 174903.
Google Scholar
|
[7]
|
J.M. Chung and E. Peacock-Lpez, Cross-diffusion in the templator model of chemical self-replication, Phys. Let. A, 371(2007), 41-47.
Google Scholar
|
[8]
|
D.L. DeAngelis, R.L. Goldstein and R.V. O'Neill, A model for trophic interaction, Ecology., 56(1975), 881-892.
Google Scholar
|
[9]
|
B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion, Ecol. Model, 141(2001), 67-76.
Google Scholar
|
[10]
|
M.R. Garvie, Finite-Difference schemes for reaction diffusion equations modelling predator prey interactions in MATLAB, Bull.Math.Biol., 69(2007), 931-956.
Google Scholar
|
[11]
|
C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratiodependent predator-prey model, Bull.Math.Biol, 61(1999), 19-32.
Google Scholar
|
[12]
|
S.A. Levin, T.M. Powell and J.H. Steele, Patch Dynamics, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1993.
Google Scholar
|
[13]
|
P.P. Liu and Z. Jin, Pattern formation of a predator-prey model, Nonlinear Anal. Hybrid Syst, 3(2009), 177-183.
Google Scholar
|
[14]
|
Y. Lou and W. M. Ni, Diffusion vs cross-diffusion:An elliptic approach, J. Differential Equations, 154(1999), 157-190.
Google Scholar
|
[15]
|
E.A. McGehee and E. Peacock-Lpez, Turing patterns in a modified Lotka Volterra model, Phys. Lett. A, 342(2005), 90-98.
Google Scholar
|
[16]
|
J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
Google Scholar
|
[17]
|
Gui-Quan Sun, Guang Zhang, Zhen Jin and Li Li, Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dyn, 58(2012), 75-84.
Google Scholar
|
[18]
|
Gui-Quan Sun, Zhen Jin, Li Li, Mainul Haque and Bai-Lian Li, Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn, 69(2012), 1631-1638.
Google Scholar
|
[19]
|
M. Sambath and K. Balachandran, Pattern formation for a ratio-dependent predator-prey model with cross diffusion, J. Korean Soc. Ind. Appl. Math, 16(2012), 249-256.
Google Scholar
|
[20]
|
M. Sambath, S. Gnanavel and K. Balachandran, Stability and Hopf bifurcation of a diffusive predatorprey model with predator saturation and competition, Appl. Anal, DOI:10.1080/00036811.2012.742185.
Google Scholar
|
[21]
|
J. Shi, Z. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, Journal of Applied Analysis and Computation, 1(2011), 95-119.
Google Scholar
|
[22]
|
X.K. Sun, H.F. Huo and H. Xiang, Bifurcation and stability analysis in predator-prey model with a stage-structure for predator, Nonlinear Dyn, 58(2009), 497-513.
Google Scholar
|
[23]
|
A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B:Biol. Sci, 237(1952), 37-72.
Google Scholar
|
[24]
|
Y. Wang and J. Wang, Influence of prey refuge on predator-prey dynamics, Nonlinear Dyn, 67(2012), 191-201.
Google Scholar
|