2013 Volume 3 Issue 1
Article Contents

M. Sambath, K. Balachandran. SPATIOTEMPORAL DYNAMICS OF A PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 71-80. doi: 10.11948/2013006
Citation: M. Sambath, K. Balachandran. SPATIOTEMPORAL DYNAMICS OF A PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE[J]. Journal of Applied Analysis & Computation, 2013, 3(1): 71-80. doi: 10.11948/2013006

SPATIOTEMPORAL DYNAMICS OF A PREDATOR-PREY MODEL INCORPORATING A PREY REFUGE

  • In this paper, we investigate the spatiotemporal dynamics of a ratio-dependent predator-prey model with cross diffusion incorporating proportion of prey refuge. First we get the critical lines of Hopf and Turing bifurcations in a spatial domain by using mathematical theory. More specifically, the exact Turing region is given in a two parameter space. Also we perform a series of numerical simulations. The obtained results reveal that this system has rich dynamics, such as spotted, stripe and labyrinth patterns which show that it is useful to use the predator-prey model to reveal the spatial dynamics in the real world.
    MSC: 92D25;70K50;35B36
  • 加载中
  • [1] D. Alonso, F. Bartumeus and J. Catalan, Mutual interference between predators can give rise to Turing spatial patterns, Ecology., 83(2002), 28-34.

    Google Scholar

    [2] Shaban Aly, Imbunm Kim and Dongwoo Sheen, Turing instability for a ratiodependent predator-prey model with diffusion, Appl. Math. Comput, 217(2011), 7265-7281.

    Google Scholar

    [3] M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predatorprey model, Math. Comput. Modelling, 51(2010), 44-52.

    Google Scholar

    [4] F. Bartumeus, D. Alonso and J. Catalan, Self-organized spatial structures in a ratio-dependent predator-prey model, Physica A, 295(2001), 53-57.

    Google Scholar

    [5] Martin Baurmann, Thilo Gross and Ulrike Feudel, Instabilities in spatially extended predator-prey systems:Spatiotemporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theor. Biol, 245(2007), 220-229.

    Google Scholar

    [6] J.M. Chung and E. Peacock-Lpez, Bifurcation diagrams and Turing patterns in a chemical self-replicating reaction-diffusion system with cross diffusion, J. Chem. Phys, 127(2007), 174903.

    Google Scholar

    [7] J.M. Chung and E. Peacock-Lpez, Cross-diffusion in the templator model of chemical self-replication, Phys. Let. A, 371(2007), 41-47.

    Google Scholar

    [8] D.L. DeAngelis, R.L. Goldstein and R.V. O'Neill, A model for trophic interaction, Ecology., 56(1975), 881-892.

    Google Scholar

    [9] B. Dubey, B. Das and J. Hussain, A predator-prey interaction model with self and cross-diffusion, Ecol. Model, 141(2001), 67-76.

    Google Scholar

    [10] M.R. Garvie, Finite-Difference schemes for reaction diffusion equations modelling predator prey interactions in MATLAB, Bull.Math.Biol., 69(2007), 931-956.

    Google Scholar

    [11] C. Jost, O. Arino and R. Arditi, About deterministic extinction in ratiodependent predator-prey model, Bull.Math.Biol, 61(1999), 19-32.

    Google Scholar

    [12] S.A. Levin, T.M. Powell and J.H. Steele, Patch Dynamics, Lecture Notes in Biomathematics, Springer-Verlag, Berlin, 1993.

    Google Scholar

    [13] P.P. Liu and Z. Jin, Pattern formation of a predator-prey model, Nonlinear Anal. Hybrid Syst, 3(2009), 177-183.

    Google Scholar

    [14] Y. Lou and W. M. Ni, Diffusion vs cross-diffusion:An elliptic approach, J. Differential Equations, 154(1999), 157-190.

    Google Scholar

    [15] E.A. McGehee and E. Peacock-Lpez, Turing patterns in a modified Lotka Volterra model, Phys. Lett. A, 342(2005), 90-98.

    Google Scholar

    [16] J.D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.

    Google Scholar

    [17] Gui-Quan Sun, Guang Zhang, Zhen Jin and Li Li, Predator cannibalism can give rise to regular spatial pattern in a predator-prey system, Nonlinear Dyn, 58(2012), 75-84.

    Google Scholar

    [18] Gui-Quan Sun, Zhen Jin, Li Li, Mainul Haque and Bai-Lian Li, Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dyn, 69(2012), 1631-1638.

    Google Scholar

    [19] M. Sambath and K. Balachandran, Pattern formation for a ratio-dependent predator-prey model with cross diffusion, J. Korean Soc. Ind. Appl. Math, 16(2012), 249-256.

    Google Scholar

    [20] M. Sambath, S. Gnanavel and K. Balachandran, Stability and Hopf bifurcation of a diffusive predatorprey model with predator saturation and competition, Appl. Anal, DOI:10.1080/00036811.2012.742185.

    Google Scholar

    [21] J. Shi, Z. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, Journal of Applied Analysis and Computation, 1(2011), 95-119.

    Google Scholar

    [22] X.K. Sun, H.F. Huo and H. Xiang, Bifurcation and stability analysis in predator-prey model with a stage-structure for predator, Nonlinear Dyn, 58(2009), 497-513.

    Google Scholar

    [23] A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. Ser. B:Biol. Sci, 237(1952), 37-72.

    Google Scholar

    [24] Y. Wang and J. Wang, Influence of prey refuge on predator-prey dynamics, Nonlinear Dyn, 67(2012), 191-201.

    Google Scholar

Article Metrics

Article views(1764) PDF downloads(1420) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint