[1]
|
T. Abdeljawad, Fixed points for generalized weakly contractive mappings in partial metric spaces, Math. Comput. Modelling, 54(2011), 2923-2927.
Google Scholar
|
[2]
|
I. Altun and A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., (2011) Article ID 508730 doi:10.1155/2011/508730.
Google Scholar
|
[3]
|
I. Altun, B. Damjanovic and D. Djoric, Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. Math. Lett., 23(2009), 310-316.
Google Scholar
|
[4]
|
I. Altun, F. Sola and H. Simsek, Generalized contraction on partial metric spaces, Topology Appl., 157(18)(2010), 2778-2785.
Google Scholar
|
[5]
|
H. Aydi, S. Hadj-Amor and E. Karapinar, Berinde-Type generalized contractions on partial metric spaces, Abstr. Appl. Anal., (2013) Article ID 312479 doi:10.1155/2013.
Google Scholar
|
[6]
|
S.K. Chatterjee, Fixed point theorems, C.R. Acad. Bulgare Sci., 25(1975), 727-730.
Google Scholar
|
[7]
|
C. Chen and C. Zhu, Fixed point theorems for weakly C-contractive mappings in partial metric spaces, Fixed Point Theory Appl., (2013) doi:10.1186/1687-1812-2013-107.
Google Scholar
|
[8]
|
K.P. Chi, E. Karapinar and T.D. Thanh, A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, 55(2012), 71673-1681.
Google Scholar
|
[9]
|
B.S. Choudhury, Unique fixed point theorem for weak C-contractive mappings, Kathmandu Univ. J. Sci. Eng. Tech., 5(1)(2009), 6-13.
Google Scholar
|
[10]
|
Deepmala, A Study of Fixe Point Theorems for Nonlinear Contractions and Its Applications[Ph.D. thesis], Pt. Ravishankar Shukla University, Raipur, India, 2014.
Google Scholar
|
[11]
|
Deepmala, Existence theorems for solvability of a functional equation arising in dynamic programming, International Journal of Mathematics and Mathematical Sciences, 2014(2014), Article ID 706585, 9 pages.
Google Scholar
|
[12]
|
Deepmala and H.K. Pathak, A study on some problems on existence of solutions for nonlinear functional-integral equations, ActaMathematica Scientia, Series BEnglish Edition, 33(5)(2013), 1305-1313.
Google Scholar
|
[13]
|
M. Frechet, Sur quelques point du calcul fonctionnel, Rendiconti del circolo Matematio di palermo, 22(1906), 1-74.
Google Scholar
|
[14]
|
E. Karapinar and I.M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett., 24(2011), 1894-1899.
Google Scholar
|
[15]
|
E. Karapinar and I.S. Yuce, Fixed point theory for cyclic generalized weak ϕ-contraction on partial metric spaces, Abstr. Appl. Anal., (2012) Article ID 491542 doi:10.1155/2012.
Google Scholar
|
[16]
|
S.C. Malik and S. Arora, Mathematical analysis, fourth edition, New age Int. Publ., (2010), page-87.
Google Scholar
|
[17]
|
S.G. Matthews, Partial Metric Topology, in proceeding of 8th summer conference on General Topology and Applications, at Queens College (1922) in:Annals of the New York Academy of Sciences, 728(1994), 183-197.
Google Scholar
|
[18]
|
S.G. Matthews, Partial Metric Topology, Research Report 212, Dept. of Comput. Sci., University of Warwick, 1992.
Google Scholar
|
[19]
|
L.N. Mishra, S.K. Tiwari, V.N. Mishra and I.A. Khan, Unique fixed point theorems for generalized contractive mappings in partial metric spaces, J. Function Spaces, (2015) Manuscript Id 960827, in press.
Google Scholar
|
[20]
|
V.N. Mishra, M.L. Mittal, and U. Singh, On best approximation in locally convex space, Varahmihir Journal of Mathematical Sciences India, 6(1)(2006), 43-48.
Google Scholar
|
[21]
|
V.N. Mishra, Some Problems on Approximations of Functions in Banach spaces[Ph.D. thesis], Indian Institute of Technology, Uttarakhand, India, 2007.
Google Scholar
|
[22]
|
V.N. Mishra and L.N. Mishra, Trigonometric approximation in Lp(p ≥ 1)-spaces, International Journal of Contemporary Mathematical Sciences, 7(2012), 909-918.
Google Scholar
|
[23]
|
H.K. Nashine, Z. Kadelburg and S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Modelling, 57(2013), 2355-2365.
Google Scholar
|
[24]
|
W. Shatanawi, Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces, Math. Comput. Modelling, 54(2011), 2816-2826.
Google Scholar
|
[25]
|
D.P. Shukla and S.K. Tiwari, Unique fixed point theorem for weakly Scontractive mappings, Gen. Math. Notes, 4(1)(2011), 28-34.
Google Scholar
|
[26]
|
D.P. Shukla, S.K. Tiwari and S.K. Shukla, Fixed point theorems for a pair of compatible mappings in integral type equation, Int. J. of Math. Sci. & Engg. Appls, 7(VI)(2013), 413-419.
Google Scholar
|
[27]
|
D.P. Shukla, S.K. Tiwari and S.K. Shukla, Unique common fixed point theorems for compatible mappings in complete metric space, Gen. Math. Notes, 18(1)(2013), 13-23.
Google Scholar
|
[28]
|
S. Wang, Multidimenstional fixed point theorems for isotone mappings in partially ordered metric spaces, Fixed Point Theory Appl., 54(2014), 2014-137.
Google Scholar
|