[1]
|
A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293(2015), 104-114.
Google Scholar
|
[2]
|
A. Atangana, D. Baleanu, Numerical solution of a kind of fractional parabolic equations via two difference schemes, Abst. Appl. Anal., 2013(2013), ID 828764, 8 pages.
Google Scholar
|
[3]
|
D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus:Models and Numerical Methods, 3 of Series on Complexity, Nonlinearity and Chaos,World Scientific Publishing, New York, NY.USA, 2012.
Google Scholar
|
[4]
|
T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London, Ser. A Math. Phys. Sci., 272(1972), 47-78.
Google Scholar
|
[5]
|
W.P. Bu, Y.F. Tang and J.Y. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276(2014), 26-38.
Google Scholar
|
[6]
|
A.J. Cheng, H. Wang and K.X. Wang, A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion, Numer. Methods Partial Differ. Equ., (2014). DOI:10.1002/num.21901.
Google Scholar
|
[7]
|
M.H. Chen and W.H. Deng, A second-order numerical method for twodimensional two-sided space fractional convection diffusion equation, arXiv:1304.3788v1[math.NA].
Google Scholar
|
[8]
|
M.R. Cui, Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients, Appl. Math. Comput., 246(2014), 464-473.
Google Scholar
|
[9]
|
M.R. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math., 255(2014), 404-416.
Google Scholar
|
[10]
|
I. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 190(2006)(1-2), 532-547.
Google Scholar
|
[11]
|
W.H. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations, arXiv:1403.5759[math.NA].
Google Scholar
|
[12]
|
H.F. Ding and C.P. Li, Numerical algorithms for the fractional diffusion-wave equation with reaction term, Abst. Appl. Anal., 2013(2013), ID 493406, 15 pages.
Google Scholar
|
[13]
|
N.J. Ford, J.Y. Xiao and Y.B. Yan, A finite element method for time fractional partial differential equations, Fractional Calculus and Applied Analysis, 14(2011)(3), 454-474.
Google Scholar
|
[14]
|
B.L. Guo, X.K. Pu and F.H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Bei Jing, Science Press, 2011.
Google Scholar
|
[15]
|
L. Guo and H.Z. Chen, H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 77(2006)(2), 205-221.
Google Scholar
|
[16]
|
M. Javidi and B. Ahmad, Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients, J. Appl. Anal. Comput., 5(2015)(1), 52-63.
Google Scholar
|
[17]
|
Y.J. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model., 39(2015), 1163-1171.
Google Scholar
|
[18]
|
Y.J. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235(2011), 3285-3290.
Google Scholar
|
[19]
|
Y.J. Jiang and J.T. Ma, Moving finite element methods for time fractional partial differential equations, Sci. China Math., 56(2013), 1287-1300.
Google Scholar
|
[20]
|
B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51(2013), 445-466.
Google Scholar
|
[21]
|
T. Kakutani and K. Matsuuchi, Effect of viscosity on long gravity waves, J. Phys. Soc. Jpn., 39(1975), 237-246.
Google Scholar
|
[22]
|
C.P. Li, F.H. Zeng and F. Liu, Spectral approximations to the fractional integral and derivative, Fractional Calculus and Applied Analysis, 15(2012), 383-406.
Google Scholar
|
[23]
|
C.P. Li, Z.G. Zhao, and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62(2011), 855-875.
Google Scholar
|
[24]
|
J.C. Li, Y.Q. Huang and Y.P. Lin, Developing finite element methods for maxwells equations in a colecole dispersive medium, SIAM J. Sci. Comput., 33(2011)(6), 3153-3174.
Google Scholar
|
[25]
|
N. Li, F.Z. Gao and T.D. Zhang, A numerical study on the expanded mixed finite element method for the BBM equation, Journal of Information & Computational Science, 10(2013)(2), 355-364.
Google Scholar
|
[26]
|
Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 225(2007), 1533-1552.
Google Scholar
|
[27]
|
F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191(2007), 12-20.
Google Scholar
|
[28]
|
Y. Liu, Y.W. Du, H. Li, S. He and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reactionCdiffusion problem, Comput. Math. Appl., 70(2015), 573-591.
Google Scholar
|
[29]
|
Y. Liu, Y.W. Du, H. Li and J.F. Wang, An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, J. Appl. Math. Comput., 47(2015), 103-117.
Google Scholar
|
[30]
|
Y. Liu and H. Li, H1-Galerkin mixed finite element methods for pseudohyperbolic equations, Appl. Math. Comput., 212(2009)(2), 446-457.
Google Scholar
|
[31]
|
Y. Liu, H. Li, Y.W. Du and J.F. Wang, Explicit multistep mixed finite element method for RLW equation, Abst. Appl. Anal., 2013, ID 768976, 12 pages.
Google Scholar
|
[32]
|
Y. Liu, Z.C. Fang, H. Li and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243(2014), 703-717.
Google Scholar
|
[33]
|
Z.D. Luo and R.X. Liu, Mixed finite element analysis and numerical solitary solution for the RLW equation, SIAM J. Numer. Anal., 36(1999)(1), 89-104.
Google Scholar
|
[34]
|
M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56(2006)(1), 80-90.
Google Scholar
|
[35]
|
L.Q. Mei and Y.P. Chen, Explicit multistep method for the numerical solution of RLW equation, Appl. Math. Comput., 218(2012)(18), 9547-9554.
Google Scholar
|
[36]
|
A.K. Pani, An H1-Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal., 35(1998), 712-727.
Google Scholar
|
[37]
|
A.K. Pani and G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22(2002), 231-252.
Google Scholar
|
[38]
|
J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, J. Comput. Appl. Math., 193(2006)(1), 243-268.
Google Scholar
|
[39]
|
S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Computing, 42(2013), 371-386.
Google Scholar
|
[40]
|
S. Shen, F. Liu and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numerical Algorithm, 56(2011), 383-404.
Google Scholar
|
[41]
|
D.Y. Shi and Q.L. Tang, Nonconforming H1-Galerkin mixed finite element method for strongly damped wave equations, Numerical Functional Analysis and Optimization, 32(2013)(12), 1348-1369.
Google Scholar
|
[42]
|
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228(2009), 4038-4054.
Google Scholar
|
[43]
|
T.J. Sun and K.Y. Ma, Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation, J. Comput. Appl. Math., 267(2014), 33-48.
Google Scholar
|
[44]
|
K.X. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Advances in Water Resources, 34(2011)(7), 810-816.
Google Scholar
|
[45]
|
Z.B. Wang and S.W. Vong, Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277(2014), 1-15.
Google Scholar
|
[46]
|
L.L. Wei, Y.N. He, X.D. Zhang and S.L. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elements in Analysis & Design, 59(2012), 28-34.
Google Scholar
|
[47]
|
M.F. Wheeler, A priori L2-error estimates for Galerkin approximations to parabolic differential equations, SIAM J. Numer. Anal., 10(1973)(4), 723-749.
Google Scholar
|
[48]
|
Q. Yang, I. Turner, T. Moroney and F. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reactiondiffusion equations, Appl. Math. Model., 38(2014)(15), 3755-3762.
Google Scholar
|
[49]
|
S.B. Yuste and J. Quintana-Murillo, A Finite Difference Method with Nonuniform Time steps for Fractional Diffusion Equation, Computer Physics Communications, 183(2012)(12), 2594-2600.
Google Scholar
|
[50]
|
H. Zhang, F. Liu and V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217(2010), 2534-2545.
Google Scholar
|
[51]
|
H. Zhang, F. Liu, M.S. Phanikumar and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advectiondispersion model, Comput. Math. Appl., 66(2013), 693-701.
Google Scholar
|
[52]
|
Y.N. Zhang, Z.Z. Sun and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265(2014), 195-210.
Google Scholar
|
[53]
|
Z.G. Zhao and C.P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl.Math.Comput., 219(2012)(6), 2975-2988.
Google Scholar
|
[54]
|
F.H. Zeng, C.P. Li, F.W. Liu and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J.Sci.Comput., 35(2013)(6), A2976-A3000.
Google Scholar
|
[55]
|
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing, 2014.
Google Scholar
|
[56]
|
Z.J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34(2010), 2414-2425.
Google Scholar
|
[57]
|
P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variableorder fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47(2009), 1760-1781.
Google Scholar
|