2016 Volume 6 Issue 2
Article Contents

Jin-Feng Wang, Min Zhang, Hong Li, Yang Liu. FINITE DIFFERENCE/H1-GALERKIN MFE PROCEDURE FOR A FRACTIONAL WATER WAVE MODEL[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 409-428. doi: 10.11948/2016031
Citation: Jin-Feng Wang, Min Zhang, Hong Li, Yang Liu. FINITE DIFFERENCE/H1-GALERKIN MFE PROCEDURE FOR A FRACTIONAL WATER WAVE MODEL[J]. Journal of Applied Analysis & Computation, 2016, 6(2): 409-428. doi: 10.11948/2016031

FINITE DIFFERENCE/H1-GALERKIN MFE PROCEDURE FOR A FRACTIONAL WATER WAVE MODEL

  • Fund Project:
  • In this article, an H1-Galerkin mixed finite element (MFE) method for solving the time fractional water wave model is presented. First-order backward Euler difference method and L1 formula are applied to approximate integer derivative and Caputo fractional derivative with order 1/2, respectively, and H1-Galerkin mixed finite element method is used to approximate the spatial direction. The analysis of stability for fully discrete mixed finite element scheme is made and the optimal space-time orders of convergence for two unknown variables in both H1-norm and L2-norm are derived. Further, some computing results for a priori analysis and numerical figures based on four changed parameters in the studied problem are given to illustrate the effectiveness of the current method.
    MSC: 65N30;65M60;35Q10
  • 加载中
  • [1] A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293(2015), 104-114.

    Google Scholar

    [2] A. Atangana, D. Baleanu, Numerical solution of a kind of fractional parabolic equations via two difference schemes, Abst. Appl. Anal., 2013(2013), ID 828764, 8 pages.

    Google Scholar

    [3] D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus:Models and Numerical Methods, 3 of Series on Complexity, Nonlinearity and Chaos,World Scientific Publishing, New York, NY.USA, 2012.

    Google Scholar

    [4] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. London, Ser. A Math. Phys. Sci., 272(1972), 47-78.

    Google Scholar

    [5] W.P. Bu, Y.F. Tang and J.Y. Yang, Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J. Comput. Phys., 276(2014), 26-38.

    Google Scholar

    [6] A.J. Cheng, H. Wang and K.X. Wang, A Eulerian-Lagrangian control volume method for solute transport with anomalous diffusion, Numer. Methods Partial Differ. Equ., (2014). DOI:10.1002/num.21901.

    Google Scholar

    [7] M.H. Chen and W.H. Deng, A second-order numerical method for twodimensional two-sided space fractional convection diffusion equation, arXiv:1304.3788v1[math.NA].

    Google Scholar

    [8] M.R. Cui, Combined compact difference scheme for the time fractional convection-diffusion equation with variable coefficients, Appl. Math. Comput., 246(2014), 464-473.

    Google Scholar

    [9] M.R. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math., 255(2014), 404-416.

    Google Scholar

    [10] I. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 190(2006)(1-2), 532-547.

    Google Scholar

    [11] W.H. Deng and J.S. Hesthaven, Local discontinuous Galerkin methods for fractional ordinary differential equations, arXiv:1403.5759[math.NA].

    Google Scholar

    [12] H.F. Ding and C.P. Li, Numerical algorithms for the fractional diffusion-wave equation with reaction term, Abst. Appl. Anal., 2013(2013), ID 493406, 15 pages.

    Google Scholar

    [13] N.J. Ford, J.Y. Xiao and Y.B. Yan, A finite element method for time fractional partial differential equations, Fractional Calculus and Applied Analysis, 14(2011)(3), 454-474.

    Google Scholar

    [14] B.L. Guo, X.K. Pu and F.H. Huang, Fractional Partial Differential Equations and Their Numerical Solutions, Bei Jing, Science Press, 2011.

    Google Scholar

    [15] L. Guo and H.Z. Chen, H1-Galerkin mixed finite element method for the regularized long wave equation, Computing, 77(2006)(2), 205-221.

    Google Scholar

    [16] M. Javidi and B. Ahmad, Numerical solution of fourth-order time-fractional partial differential equations with variable coefficients, J. Appl. Anal. Comput., 5(2015)(1), 52-63.

    Google Scholar

    [17] Y.J. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model., 39(2015), 1163-1171.

    Google Scholar

    [18] Y.J. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235(2011), 3285-3290.

    Google Scholar

    [19] Y.J. Jiang and J.T. Ma, Moving finite element methods for time fractional partial differential equations, Sci. China Math., 56(2013), 1287-1300.

    Google Scholar

    [20] B. Jin, R. Lazarov and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51(2013), 445-466.

    Google Scholar

    [21] T. Kakutani and K. Matsuuchi, Effect of viscosity on long gravity waves, J. Phys. Soc. Jpn., 39(1975), 237-246.

    Google Scholar

    [22] C.P. Li, F.H. Zeng and F. Liu, Spectral approximations to the fractional integral and derivative, Fractional Calculus and Applied Analysis, 15(2012), 383-406.

    Google Scholar

    [23] C.P. Li, Z.G. Zhao, and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62(2011), 855-875.

    Google Scholar

    [24] J.C. Li, Y.Q. Huang and Y.P. Lin, Developing finite element methods for maxwells equations in a colecole dispersive medium, SIAM J. Sci. Comput., 33(2011)(6), 3153-3174.

    Google Scholar

    [25] N. Li, F.Z. Gao and T.D. Zhang, A numerical study on the expanded mixed finite element method for the BBM equation, Journal of Information & Computational Science, 10(2013)(2), 355-364.

    Google Scholar

    [26] Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the timefractional diffusion equation, J. Comput. Phys., 225(2007), 1533-1552.

    Google Scholar

    [27] F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191(2007), 12-20.

    Google Scholar

    [28] Y. Liu, Y.W. Du, H. Li, S. He and W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reactionCdiffusion problem, Comput. Math. Appl., 70(2015), 573-591.

    Google Scholar

    [29] Y. Liu, Y.W. Du, H. Li and J.F. Wang, An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, J. Appl. Math. Comput., 47(2015), 103-117.

    Google Scholar

    [30] Y. Liu and H. Li, H1-Galerkin mixed finite element methods for pseudohyperbolic equations, Appl. Math. Comput., 212(2009)(2), 446-457.

    Google Scholar

    [31] Y. Liu, H. Li, Y.W. Du and J.F. Wang, Explicit multistep mixed finite element method for RLW equation, Abst. Appl. Anal., 2013, ID 768976, 12 pages.

    Google Scholar

    [32] Y. Liu, Z.C. Fang, H. Li and S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243(2014), 703-717.

    Google Scholar

    [33] Z.D. Luo and R.X. Liu, Mixed finite element analysis and numerical solitary solution for the RLW equation, SIAM J. Numer. Anal., 36(1999)(1), 89-104.

    Google Scholar

    [34] M.M. Meerschaert and C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56(2006)(1), 80-90.

    Google Scholar

    [35] L.Q. Mei and Y.P. Chen, Explicit multistep method for the numerical solution of RLW equation, Appl. Math. Comput., 218(2012)(18), 9547-9554.

    Google Scholar

    [36] A.K. Pani, An H1-Galerkin mixed finite element methods for parabolic partial differential equations, SIAM J. Numer. Anal., 35(1998), 712-727.

    Google Scholar

    [37] A.K. Pani and G. Fairweather, H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations, IMA J. Numer. Anal., 22(2002), 231-252.

    Google Scholar

    [38] J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, J. Comput. Appl. Math., 193(2006)(1), 243-268.

    Google Scholar

    [39] S. Shen, F. Liu, V. Anh, I. Turner and J. Chen, A characteristic difference method for the variable-order fractional advection-diffusion equation, J. Appl. Math. Computing, 42(2013), 371-386.

    Google Scholar

    [40] S. Shen, F. Liu and V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation, Numerical Algorithm, 56(2011), 383-404.

    Google Scholar

    [41] D.Y. Shi and Q.L. Tang, Nonconforming H1-Galerkin mixed finite element method for strongly damped wave equations, Numerical Functional Analysis and Optimization, 32(2013)(12), 1348-1369.

    Google Scholar

    [42] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228(2009), 4038-4054.

    Google Scholar

    [43] T.J. Sun and K.Y. Ma, Domain decomposition procedures combined with H1-Galerkin mixed finite element method for parabolic equation, J. Comput. Appl. Math., 267(2014), 33-48.

    Google Scholar

    [44] K.X. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Advances in Water Resources, 34(2011)(7), 810-816.

    Google Scholar

    [45] Z.B. Wang and S.W. Vong, Compact difference schemes for the modified anomalous fractional subdiffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277(2014), 1-15.

    Google Scholar

    [46] L.L. Wei, Y.N. He, X.D. Zhang and S.L. Wang, Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation, Finite Elements in Analysis & Design, 59(2012), 28-34.

    Google Scholar

    [47] M.F. Wheeler, A priori L2-error estimates for Galerkin approximations to parabolic differential equations, SIAM J. Numer. Anal., 10(1973)(4), 723-749.

    Google Scholar

    [48] Q. Yang, I. Turner, T. Moroney and F. Liu, A finite volume scheme with preconditioned Lanczos method for two-dimensional space-fractional reactiondiffusion equations, Appl. Math. Model., 38(2014)(15), 3755-3762.

    Google Scholar

    [49] S.B. Yuste and J. Quintana-Murillo, A Finite Difference Method with Nonuniform Time steps for Fractional Diffusion Equation, Computer Physics Communications, 183(2012)(12), 2594-2600.

    Google Scholar

    [50] H. Zhang, F. Liu and V. Anh, Galerkin finite element approximation of symmetric space-fractional partial differential equations, Appl. Math. Comput., 217(2010), 2534-2545.

    Google Scholar

    [51] H. Zhang, F. Liu, M.S. Phanikumar and M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advectiondispersion model, Comput. Math. Appl., 66(2013), 693-701.

    Google Scholar

    [52] Y.N. Zhang, Z.Z. Sun and H.L. Liao, Finite difference methods for the time fractional diffusion equation on non-uniform meshes, J. Comput. Phys., 265(2014), 195-210.

    Google Scholar

    [53] Z.G. Zhao and C.P. Li, Fractional difference/finite element approximations for the time-space fractional telegraph equation, Appl.Math.Comput., 219(2012)(6), 2975-2988.

    Google Scholar

    [54] F.H. Zeng, C.P. Li, F.W. Liu and I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J.Sci.Comput., 35(2013)(6), A2976-A3000.

    Google Scholar

    [55] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing, 2014.

    Google Scholar

    [56] Z.J. Zhou, An H1-Galerkin mixed finite element method for a class of heat transport equations, Appl. Math. Model., 34(2010), 2414-2425.

    Google Scholar

    [57] P. Zhuang, F. Liu, V. Anh and I. Turner, Numerical methods for the variableorder fractional advection diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47(2009), 1760-1781.

    Google Scholar

Article Metrics

Article views(2609) PDF downloads(991) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint