[1]
|
A. Bressan and A. Constantin, Global conservative solutions of the CamassaHolm equation, Arch. Rational Mech., 183(2007)(2), 215-239.
Google Scholar
|
[2]
|
S. S. Behzadi, Numerical solution of fuzzy Camassa-Holm equation by using homotopy analysis methods, Journal of Applied Analysis and Computation, 1(2011)(3), 315-323.
Google Scholar
|
[3]
|
P. F. Byrd and M. D. Friedman, Handbook of elliptic integrals for engineers and scientists, Berlin:Springer, 1971.
Google Scholar
|
[4]
|
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71(1993)(11), 1661-1664.
Google Scholar
|
[5]
|
R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech., 31(1994), 1-33.
Google Scholar
|
[6]
|
G. M. Coclite, F. Gargano and V. Sciacca, Analytic solutions and singularity formation for the Peakon b-family equations, Acta Appl. Math., 122(2012), 419-434.
Google Scholar
|
[7]
|
A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions, Theor. Math. Phys., 133(2002)(2), 1463-1474.
Google Scholar
|
[8]
|
H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation, Discrete Cont. Dyn. S., 24(2009)(4), 1047-1112.
Google Scholar
|
[9]
|
R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 455(2002), 63-82.
Google Scholar
|
[10]
|
R. S. Johnson, On the solutions of the Camassa-Holm equation, Proc. R. Soc. Lond. A, 459(2003)(2035), 1687-1708.
Google Scholar
|
[11]
|
J. Li and Z. Liu, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Applied Mathematical Modelling, 25(2000)(1), 41-56.
Google Scholar
|
[12]
|
J. Li and Z. Liu, Traveling wave solutions for a class of nonlinear dispersive equations, Chinese Annals of Mathematics, 23(2002)(3), 397-418.
Google Scholar
|
[13]
|
M. C. Lombardo, M. Sammartino and V. Sciacca, A note on the analytic solutions of the Camassa-Holm equation, Comp. Rend. Math., 341(2005)(11), 659-664.
Google Scholar
|
[14]
|
T. Matsuo, A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation, J. Comp. Appl. Math., 234(2010)(4), 1258-1266.
Google Scholar
|
[15]
|
A. V. Mikhailov and V. S. Novikov, Perturbative symmetry approach, J. Phys. A, 35(2002)(22), 4775-4790.
Google Scholar
|
[16]
|
A. B. De Monvel, A. Its and D. Shepelsky, Painlev'e-type asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 42(2010)(4), 1854-1873.
Google Scholar
|
[17]
|
A. B. De Monvel, A. Kostenko, D. Shepelsky and G. Teschlh, Long-time asymptotics for the Camassa-Holm equation, SIAM J. Math. Anal., 41(2009)(4), 1559-1588.
Google Scholar
|
[18]
|
V. Novikov, Generalization of the Camassa-Holm equation, J. Phys. A, 42(2009), 342002-1-14.
Google Scholar
|
[19]
|
T. Rehman, G. Gambino and S. R. Choudhury, Smooth and non-smooth traveling wave solutions of some generalized Camassa-Holm equations, Commun. Nonlinear Sci. Numer. Simul., 19(2014)(6), 1746-1769.
Google Scholar
|
[20]
|
G. D. Rocca, M. C. Lombardo, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl's equations, Appl. Num. Math., 56(2006)(8), 1108-1122.
Google Scholar
|
[21]
|
A. M. Wazwaz, Peakons, kinks, compactons and solitary patterns solutions for a family of Camassa-Holm equations by using new hyperbolic schemes, Appl. Math. Comput., 182(2006)(1), 412-424.
Google Scholar
|
[22]
|
S. Xie and L. Wang, Compacton and generalized kink wave solutions of the CH-DP equation, Appl. Math. Comput., 215(2010)(11), 4028-4039.
Google Scholar
|
[23]
|
S. Xie, L. Wang and Y. Zhang, Explicit and implicit solutions of a generalized Camassa-Holm-Kadomtsev-Petviashvili equation, Commun. Nonlinear Sci. Numer. Simul., 17(2012)(3), 1130-1141.
Google Scholar
|