2017 Volume 7 Issue 4
Article Contents

Mari Carme Leseduarte, Ramon Quintanilla. PHRAGMÉN-LINDELÖF ALTERNATIVE FOR THE LAPLACE EQUATION WITH DYNAMIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1323-1335. doi: 10.11948/2017081
Citation: Mari Carme Leseduarte, Ramon Quintanilla. PHRAGMÉN-LINDELÖF ALTERNATIVE FOR THE LAPLACE EQUATION WITH DYNAMIC BOUNDARY CONDITIONS[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1323-1335. doi: 10.11948/2017081

PHRAGMÉN-LINDELÖF ALTERNATIVE FOR THE LAPLACE EQUATION WITH DYNAMIC BOUNDARY CONDITIONS

  • Fund Project:
  • This paper investigates the spatial behavior of the solutions of the Laplace equation on a semi-infinite cylinder when dynamical nonlinear boundary conditions are imposed on its lateral side. We prove a PhragménLindelöf alternative for the solutions. To be precise, we see that the solutions increase in an exponential way or they decay as a polynomial. To give a complete description of the decay in this last case we also obtain an upper bound for the amplitude term by means of the boundary conditions. In the last section we sketch how to generalize the results to a system of two elliptic equations related with the heat conduction in mixtures.
    MSC: 35B30;35B40;35B53;35J65
  • 加载中
  • [1] S. Chirita and R. Quintanilla, Saint-Venant's principle in linear elastodynamics, J. Elast., 1996, 42(3), 201-215.

    Google Scholar

    [2] P. G. Ciarlet, Mathematical Elasticity, Vol I:Three-Dimensional Elasticity. Studies in Mathematics and its Applications, North-Holland, Amsterdam, 1988.

    Google Scholar

    [3] J. N. Flavin, R. J. Knops and L. E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Q. Appl. Math., 1989, 47(2), 325-350.

    Google Scholar

    [4] J. N. Flavin, R. J. Knops and L. E. Payne, Energy bounds in dynamical problems for a semi-infinite elastic beam, In:Elasticity:Mathematical Methods and Applications (G. Eason, R.W. Ogden, eds.), Chichester:Ellis Horwood, 1989, 101-111.

    Google Scholar

    [5] M. E. Gurtin and G. M. De La Penha, On the thermodynamics of mixtures, Arch. Ration. Mech. Anal., 1970, 36(5), 390-410.

    Google Scholar

    [6] C. O. Horgan, L. E. Payne and L. T. Wheeler, Spatial decay estimates in transient heat conduction, Q. Appl. Math., 1984, 42, 119-127.

    Google Scholar

    [7] C. O. Horgan and L. E. Payne, Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions, Arch. Rational Mech. Anal., 1993, 122(2), 123-144.

    Google Scholar

    [8] C. O. Horgan and R. Quintanilla, Spatial decay of transient end effects in functionally graded heat conducting materials, Q. Appl. Math., 2001, 59, 529-542.

    Google Scholar

    [9] C. O. Horgan and R. Quintanilla, Spatial behaviour of solutions of the dualphase-lag heat equations, Math. Methods Appl. Sci., 2005, 28(1), 43-57.

    Google Scholar

    [10] L. P. Khoroshun and N. S. Soltanov, Thermoelasticity of Binary Mixtures (in Russian), Naukova Dumka, Kiev, 1984.

    Google Scholar

    [11] M. C. Leseduarte and R. Quintanilla, On the decay of solutions for the heat conduction with two temperatures, Acta Mechanica, 2013, 224(3), 631-643.

    Google Scholar

    [12] R. Quintanilla, Damping of end effects in a thermoelastic theory, Appl. Math. Letters., 2001, 14(2), 137-141.

    Google Scholar

    [13] L. I. Rubinstein, On the problem of the process of propagation of heat in heterogeneous materials (in Russian), Izv. Akad. Nauk SSSR, Ser. Geogr., 1948, 12, 27-45.

    Google Scholar

Article Metrics

Article views(1886) PDF downloads(719) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint