2017 Volume 7 Issue 4
Article Contents

Jianshe Yu, Xuejie Liu. MONOTONIC DYNAMICS OF MRNA DEGRADATION BY TWO PATHWAYS[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1598-1612. doi: 10.11948/2017097
Citation: Jianshe Yu, Xuejie Liu. MONOTONIC DYNAMICS OF MRNA DEGRADATION BY TWO PATHWAYS[J]. Journal of Applied Analysis & Computation, 2017, 7(4): 1598-1612. doi: 10.11948/2017097

MONOTONIC DYNAMICS OF MRNA DEGRADATION BY TWO PATHWAYS

  • Fund Project:
  • mRNA degradation plays an important role in gene regulation. However, a defect in mRNA decay is expected to result in an increase in mRNA levels. In this paper, we will first establish a model of mRNA regulation by two pathways denoted by 5' → 3' and 3' → 5' for short, where there are two degradation rates δ1, δ2 on 5' → 3' pathway and the degradation rate on 3' → 5' pathway is δ3. The advantage of this model is that it captures fundamental biochemical reactions in the gene expression process in eukaryotic cells. Then we obtain several basic principles on the monotonicity of the mean level of newly accumulated mRNAs. It is proved that (1) the newly mean level is strictly increasing in p and κ, but is strictly decreasing in γ, where p,κ and γ are the initial activation frequency, the activation rate, and the inactivation rate, respectively,(2) the newly mean level is strictly decreasing in both δ2 and δ3, remarkably, is strictly increasing in δ1 when δ23 and decreasing when δ23 and,(3) the newly mean level is strictly increasing in time t when p<κ=(κ + γ). These conclusions not only provide a better understanding on gene expression dynamics but also would be helpful to design reasonable gene expression modules.
    MSC: 92C40;60J20;37H10
  • 加载中
  • [1] A. F. Andersson, M. Lundgren, S. Eriksson, et al., Global analysis of mRNA stability in the archaeon Sulfolobus, Genome Biol., 2006, 7(10), R99.1-10.

    Google Scholar

    [2] C. Beckham, A. Hilliker, A. M. Cziko, et al., The Dead-box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae Pbodies, Mol. Biol. Cell., 2008, 19(3), 984-993.

    Google Scholar

    [3] C. A. Beelman and R. Parker, Degradation of mRNA in Eukaryotes, Cell, 1995, 81(2), 179-183.

    Google Scholar

    [4] I. Behm-Ansmant, J. Rehwinkel, T. Doerks, et al., mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes, Genes Dev., 2006, 20(14), 1885-1898.

    Google Scholar

    [5] O. G. Berg, A model for the statistical fluctuations of protein numbers in a microbial population, J. Theor. Biol., 1978, 71(4), 587-603.

    Google Scholar

    [6] M. Brengues and R. Parker, Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae, Mol. Biol. Cell., 2007, 18(7), 2592-2602.

    Google Scholar

    [7] L. B. Carey, D. D. Van, P. M. Sloot, et al., Promoter sequence determines the relationship between expression level and noise, PLoS Biol., 2013, 11(4), e1001528.

    Google Scholar

    [8] J. R. Chubb, T. Trcek, S.M. Shenoy and R.H. Singer, Transcriptional pulsing of a developmental gene, Curr. Biol., 2006, 16(10), 1018-1025.

    Google Scholar

    [9] A. Coulon, C. C. Chow, R. H. Singer and D. R. Larson, Eukaryotic transcriptional dynamics:from single molecules to cell populations, Nat. Rev. Genet., 2013, 14(8), 572-584.

    Google Scholar

    [10] R. D. Dar, B. S. Razooky, A. Singh, et al., Transcriptional burst frequency and burst size are equally modulated across the human genome, Proc. Natl. Acad. Sci., 2012, 109(43), 17454-17459.

    Google Scholar

    [11] R. R. David and C. S. William, Stochastic model of linear, continuous protein synthesis in bacterial populations, J. Theor. Biol., 1977, 69(4), 761-766.

    Google Scholar

    [12] M. P. Deutscher, Degradation of RNA in bacteria:comparison of mRNA and stable RNA, Nucleic Acids Res., 2006, 34(2), 659-666.

    Google Scholar

    [13] M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Stochastic gene expression in a single cell, Science, 2002, 297(5584), 1183-1186.

    Google Scholar

    [14] P. L. Felmer, A. Quaas, M. Tang and J. Yu, Random dynamics of gene transcription activation in single cells, J. Diff. Eqs., 2009, 247(6), 1796-1816.

    Google Scholar

    [15] I. Golding, J. Paulsson, S. M. Zawilski, et al., Real-time kinetics of gene activity in individual bacteria, Cell, 2005, 123(6), 1025-1036.

    Google Scholar

    [16] I. Golding, J. Paulsson, S. M. Zawilski, et al., Real-time kinetics of gene activity in individual bacteria, Cell, 2005, 123(6), 1025-1036.

    Google Scholar

    [17] A. Jacobson and S. W. Peltz, Interrelation ships of the pathways of mRNA decay and translation in Eukaryotic cells, Annu. Rev. Biochem., 1996, 65(1), 693-739.

    Google Scholar

    [18] F. Jiao, M. Tang and J. Yu, Distribution profiles and their dynamic transition in stochastic gene transcription, J. Diff. Eqs., 2013, 254(8), 3307-3328.

    Google Scholar

    [19] M. Kaern, T. C. Elston, W. J. Blake, et al., Stochasticity in gene expression:from theories to phenotypes, Nat. Rev. Genet., 2005, 6(6), 451-464.

    Google Scholar

    [20] S. Karlin and H. E. Taylor, A first course in stochastic processes, Academic Press, New York, 1975.

    Google Scholar

    [21] T. B. Kepler and T. C. Elston, Stochasticity in transcriptional regulation:origins, consequences, and mathematical representations, Biophys. J., 2001, 81(6), 3116-3136.

    Google Scholar

    [22] Ms. Ko, A stochastic model for gene induction, J. Theor. Biol., 1991, 153(2), 181-194.

    Google Scholar

    [23] J. Kuang, M. Tang and J. Yu, The mean and noise of protein numbers in stochastic gene expression, J. Math. Biol., 2013, 67(2), 261-291.

    Google Scholar

    [24] R. S. Kushner, mRNA Decay in Escherichia coli Comes of Age, J. Bacteriol., 2002, 184(17), 4658-4665.

    Google Scholar

    [25] J. H. Levine, Y. H. Lin and M. B. Elowitz, Functional roles of pulsing in genetic circuits, science, 2013, 342(6163), 1193-1200.

    Google Scholar

    [26] Q. Li, L. Huang and J. Yu, Modulation of first-passage time for bursty gene expression via random signals, Math. Biosci. Eng., 2017, 14(5/6), 1261-1277.

    Google Scholar

    [27] M. K. Morris, J. Saez-Rodriguez, P. K. Sorger, et al., Logic-based models for the analysis of cell signaling networks, Biochemistry, 2010, 49(15), 3216-3224.

    Google Scholar

    [28] B. Munsky, G. Neuert and A. O. Van, Using gene expression noise to understand gene regulation, Science, 2012, 336(6078), 183-187.

    Google Scholar

    [29] J. Paulsson, Summing up the noise in gene networks, Nature, 2004, 427(6973), 415-418.

    Google Scholar

    [30] J. Peccoud and B. Ycart, Markovian modelling of gene-product synthesis, Theor. Popul. Biol., 1995, 48(2), 222-234.

    Google Scholar

    [31] A. Raj, C. S. Peskin, D. Tranchina, etal, Stochastic mRNA synthesis in mammalian cells, PLoS Biol., 2006, 4(10), 1707-1719.

    Google Scholar

    [32] D. R. Rigney, Note on the kinetics and stochastics of induced protein synthesis as influenced by various models for messenger RNA degradation, J. Theor. Biol., 1979, 79(2), 247-257.

    Google Scholar

    [33] A. Sanchez, S. Choubey and J. Kondev, Stochastic models of transcription:From single molecules to single cells, Methods, 2013, 62(1), 13-25.

    Google Scholar

    [34] A. Sanchez and I. Golding, Genetic determinants and cellular constraints in noisy gene expression, Science, 2013, 342(6163), 1188-1193.

    Google Scholar

    [35] D. W. Selinger, R. M. Saxena, K. J. Cheung, et al., Global RNA Half-Life Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation, Genome Res., 2003, 13(2), 216-223.

    Google Scholar

    [36] O. Shalem, O. Dahan, M. Levo, et al., Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation, Mol. Syst. Biol., 2008, 4(1), 97-111.

    Google Scholar

    [37] C. Sin, D. Chiarugi and A. Valleriani, Single-molecule modeling of mRNA degradation by miRNA:Lessons from data, BMC Syst. Biol., 2015, 9 Suppl3(3):S2.

    Google Scholar

    [38] Q. Sun, M. Tang and J. Yu, Modulation of gene transcription noise by competing transcription factors, J. Math. Biol., 2012, 64(3), 469-494.

    Google Scholar

    [39] Q. Sun, M. Tang and J. Yu, Temporal profile of gene transcription noise modulated by cross-talking signal transduction pathways, Bull. Math. Biol., 2012, 74(2), 375-398.

    Google Scholar

    [40] K. J. Tanaka, K. Ogawa, M. Takagi, et al., RAP55, a cytoplasmic mRNP component, represses translation in Xenopus oocytes, J. Biol. Chem., 2006, 281(52), 40096-40106.

    Google Scholar

    [41] M. Tang, The mean and noise of stochastic gene transcription, J. Theor. Biol., 2008, 253(2), 271-280.

    Google Scholar

    [42] M. Tang, The mean frequency of transcriptional bursting and its variation in single cells, J. Math. Biol., 2010, 60(1), 27-58.

    Google Scholar

    [43] E. Vlad, J. Tao and K. Rahul, Quantifying mRNA synthesis and decay rates using small RNAs, Biophys. J., 2010, 98(12), 2780-2784.

    Google Scholar

    [44] J. Yu, Q. Sun and M. Tang, The nonlinear dynamics and fluctuations of mRNA levels in cross-talking pathway activated transcription, J. Theor. Biol., 2014, 363, 223-234.

    Google Scholar

Article Metrics

Article views(1788) PDF downloads(692) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint