[1]
|
R. P. Agarwal, Y. J. Cho and X. Qin, Generalized projection algorithms for nonlinear operators, Numer. Funct. Anal. Optim., 2007, 28, 1197-1215.
Google Scholar
|
[2]
|
Y. I. Alber, Metric and generalized projection operators in Banach spaces:properties and applications, in:A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996.
Google Scholar
|
[3]
|
I. K. Argyros, S. George, Extending the applicability of a new Newton-like method for nonlinear equations, Commun. Optim. Theory, 2016, 2016, 14.
Google Scholar
|
[4]
|
B. A. Bin Dehaish, X. Qin, A. Latif and H. Bakodah, Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., 2015, 16, 1321-1336.
Google Scholar
|
[5]
|
B. A. Bin Dehaish, A. Latif, H. O Bakodah and X. Qin, A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., 2015, 2015(1), 51.
Google Scholar
|
[6]
|
E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 1994, 63, 123-145.
Google Scholar
|
[7]
|
R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., 1993, 65, 169-179.
Google Scholar
|
[8]
|
D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 2001, 7, 151-174.
Google Scholar
|
[9]
|
S. Y. Cho, B. A. Bin Dehaish and X. Qin, Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., 2017, 7, 427-438.
Google Scholar
|
[10]
|
S. Y. Cho, Generalized mixed equilibrium and fixed point problems in a Banach space, J. Nonlinear Sci. Appl., 2016, 9, 1083-1092.
Google Scholar
|
[11]
|
S. Y. Cho, W. Li and S. M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., 2013, 2013, 199.
Google Scholar
|
[12]
|
I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer, Dordrecht, 1990.
Google Scholar
|
[13]
|
D. V. Hieu, A. Moudafi, A barycentric projected-subgradient algorithm for equilibrium problems, J. Nonlinear Var. Anal., 2017, 1, 43-59.
Google Scholar
|
[14]
|
X. Qin, L. Wang, On asymptotically quasi-φ-nonexpansive mappings in the intermediate sense, Abst. Appl. Anal., 2012, 2012, 636217.
Google Scholar
|
[15]
|
X. Qin and J. C. Yao, Projection splitting algorithm for nonself operators, J. Nonlinear Convex Anal., 2017, 18, 925-935.
Google Scholar
|
[16]
|
X. Qin, Y. J. Cho, and S. M. Kang, Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., 2009, 225, 20-30.
Google Scholar
|
[17]
|
X. Qin, S. Y. Cho and S. M. Kang, On hybrid projection methods for asymptotically quasi-φ-nonexpansive mappings, Appl. Math. Comput., 2010, 215, 3874-3883.
Google Scholar
|
[18]
|
R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math., 1966, 17, 497-510.
Google Scholar
|
[19]
|
W. Takahashi and K. Zembayashi, Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 2009, 70, 45-57.
Google Scholar
|
[20]
|
Z. M. Wang and X. Zhang, Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., 2014, 2014, 15.
Google Scholar
|
[21]
|
S. Wang, On fixed point and variational inclusion problems, Filomat, 2015, 29, 1409-1417.
Google Scholar
|
[22]
|
Q. Yuan, Convergence of a Bregman projection algorithm for monotone operators in Banach spaces, Commun. Optim. Theory, 2016, 2016, 23.
Google Scholar
|
[23]
|
M. Zhang, S. Y. Cho, A monotone projection algorithm for solving fixed points of nonlinear mappings and equilibrium problems, J. Nonlinear Sci. Appl., 2016, 9, 1453-1462,
Google Scholar
|
[24]
|
J. Zhao, Approximation of solutions to an equilibrium problem in a nonuniformly smooth Banach space, J. Inequal. Appl., 2013, 2013, 387.
Google Scholar
|