2018 Volume 8 Issue 3
Article Contents

Alain Miranville, Armel Judice Ntsokongo. ON ANISOTROPIC CAGINALP PHASE-FIELD TYPE MODELS WITH SINGULAR NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 655-674. doi: 10.11948/2018.655
Citation: Alain Miranville, Armel Judice Ntsokongo. ON ANISOTROPIC CAGINALP PHASE-FIELD TYPE MODELS WITH SINGULAR NONLINEAR TERMS[J]. Journal of Applied Analysis & Computation, 2018, 8(3): 655-674. doi: 10.11948/2018.655

ON ANISOTROPIC CAGINALP PHASE-FIELD TYPE MODELS WITH SINGULAR NONLINEAR TERMS

  • Our aim in this paper is to study the well-posedness and the existence of the global attractor of anisotropic Caginalp phase-field type models with singular nonlinear terms. The main difficulty is to prove, in one and two space dimensions, that the order parameter remains in the physically relevant range and this is achieved by deriving proper a priori estimates.
    MSC: 35K55;35B41;35B45
  • 加载中
  • [1] S. Agmon, Lectures on Elliptic Boundary Value Problems, Mathematical Studies. Van Nostrand, New York, 1965.

    Google Scholar

    [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations, I, Commun. Pure Appl. Math., 1959, 12, 623-727.

    Google Scholar

    [3] A. Bonfoh, PhD thesis, University of Poitiers, 2001.

    Google Scholar

    [4] G. Caginalp, Conserved-phase field system:implications for kinetic undercooling, phys. Rev. B, 1988, 38, 789-791.

    Google Scholar

    [5] G. Caginalp, The dynamics of conseved phase-field system:Stefan-Like, HeleShaw and Cahn-Hilliard models as asymptotic limits, IMA J. Appl. Math., 1990, 44, 77-94.

    Google Scholar

    [6] G. Caginalp, An analysis of a phase-field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92, 205-245.

    Google Scholar

    [7] G. Caginalp and E. Esenturk, Anisotropic phase-field equations of arbitrary order, Discrete Contin. Dyn. Systems S, 2011, 4, 311-350.

    Google Scholar

    [8] L. Cherfils, A. Miranville and S.Peng, Higher-order models in phase separation, J. Appl. Anal. Comput., 2017, 7, 39-56.

    Google Scholar

    [9] L. Cherfils, A. Miranville and S. Peng, Higher-order Allen-Cahn models with logarithmic nonlinear terms, Advances in dynamical systems and control, 69, 247-263, 2016.

    Google Scholar

    [10] L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and syngular potential, Appl. Math., 2009, 54, 89-115.

    Google Scholar

    [11] G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interaction I. Macroscopic limits, J. Statist. Phys., 1997, 87, 37-61.

    Google Scholar

    [12] A. Miranville, Some mathematical models in phase transition, Discrete Contin. Dyn. Systems S, 2014, 7, 271-306.

    Google Scholar

    [13] A. Miranville, Higher-order Anisotropic Caginalp Phase-Field systems, Mediterr. J. Math., 2016, 13, 4519-4535.

    Google Scholar

    [14] A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Math., 2017, 2, 479-544.

    Google Scholar

    [15] A. Miranville, On the conserved phase-field model, J. Math. Anal. Appl., 2013, 400, 143-152.

    Google Scholar

    [16] A. Miranville, On higher-order anisotropic conservative Caginalp phase-field systems, Appl. Math. Optim., 2018, 77, 297-314.

    Google Scholar

    [17] A. Miranville, On a phase-field model with a logarithmic nonlinearity, Appl. Math., 2012, 57, 215-229.

    Google Scholar

    [18] A. Miranville, On the anisotropic Caginalp phase-field system with singular nonlinear terms, in Differential Equations, Control theory and Optimization, 245-260, 2016.

    Google Scholar

    [19] A. Miranville and R. Temam, On the Cahn-Hilliard-Oono-Navier-Stokes equations with singular potentials, Appl. Anal., 2016, 95, 2609-2624.

    Google Scholar

    [20] A. Miranville and R. Quintanilla, A type Ⅲ phase-field system with a logarithmic potential, Appl. Math. Letters, 2011, 24, 1003-1008.

    Google Scholar

    [21] A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 2016, 74, 375-398.

    Google Scholar

    [22] A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dynn. Systems, 2010, 28, 275-310.

    Google Scholar

    [23] A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in Handbook of Differential Equations, Evolutionary Partial Differential Equations, Vol. 4, C.M. Dafermos, M. Pokorny eds., Elsevier, Amsterdam, 103-200, 2008.

    Google Scholar

    [24] A. Miranville and S. Zelik, Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 2004, 27, 545-582.

    Google Scholar

    [25] A. J. Ntsokongo, On higher-order anisotropic Caginalp phase-field systems with polynomial nonlinear terms, J. Appl. Anal. Comput., 2017, 7, 992-1012.

    Google Scholar

    [26] A. J. Ntsokongo, D. Moukoko, F. D. R. Langa and F. Moukamba, On higherorder anisotropic conservative Caginalp phase-field type models, AIMS Math., 2017, 2, 215-229.

    Google Scholar

    [27] A. J. Ntsokongo and N. Batangouna, Existence and uniqueness of solutions for a conserved phase-field type model, AIMS Math., 2016, 1, 144-155.

    Google Scholar

    [28] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, Second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.

    Google Scholar

    [29] J. E. Taylor, Mean curvature and weighted mean curvature, Acta Metall. Mater., 1992, 40, 1475-1485.

    Google Scholar

    [30] J. W. Cahn and J. E Hilliard, Free energy of a nonuniform I. Interfacial free energy, J. Chem. Phys., 1958, 2, 258-267.

    Google Scholar

    [31] M. Grasselli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of parabolic-hyperbolic phase-field system with singular potentials, discrete contin. Dyn. Systems, 2010, 28, 67-114.

    Google Scholar

    [32] H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 1998, 195, 77-114.

    Google Scholar

    [33] P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP), 1968, 19, 614-627.

    Google Scholar

    [34] P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Appl. Math. Psys. (ZAMP) 1968, 19, 969-970.

    Google Scholar

    [35] P. J. Chen, M. E. Gurtin, W. O. Williams, On the thermodynamics of nonsimple materials with two temperatures, J. Appl. Math. Psys. (ZAMP), 1968, 20, 107-112.

    Google Scholar

    [36] R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 2009, 32, 1270-1278.

    Google Scholar

Article Metrics

Article views(2187) PDF downloads(842) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint