2020 Volume 10 Issue 4
Article Contents

Yangrong Li, Renhai Wang. ASYMPTOTIC AUTONOMY OF RANDOM ATTRACTORS FOR BBM EQUATIONS WITH LAPLACE-MULTIPLIER NOISE[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1199-1222. doi: 10.11948/20180145
Citation: Yangrong Li, Renhai Wang. ASYMPTOTIC AUTONOMY OF RANDOM ATTRACTORS FOR BBM EQUATIONS WITH LAPLACE-MULTIPLIER NOISE[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1199-1222. doi: 10.11948/20180145

ASYMPTOTIC AUTONOMY OF RANDOM ATTRACTORS FOR BBM EQUATIONS WITH LAPLACE-MULTIPLIER NOISE

  • Corresponding author: Email address: liyr@swu.edu.cn(Y. Li)
  • Fund Project: This work was supported by National Natural Science Foundation of China grant 11571283
  • We study asymptotic autonomy of random attractors for possibly non-autonomous Benjamin-Bona-Mahony equations perturbed by Laplacemultiplier noise. We assume that the time-indexed force converges to the time-independent force as the time-parameter tends to negative infinity, and then show that the time-indexed force is backward tempered and backward tail-small. These properties allow us to show that the asymptotic compactness of the non-autonomous system is uniform in the past, and then obtain a backward compact random attractor when the attracted universe consists of all backward tempered sets. More importantly, we prove backward convergence from time-fibers of the non-autonomous attractor to the autonomous attractor. Measurability of solution mapping, absorbing set and attractor is rigorously proved by using Egoroff, Lusin and Riesz theorems.
    MSC: 35B40, 37L55, 60H15
  • 加载中
  • [1] J. Avrin and J. A. Goldstein, Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions, Nonlinear Anal., 1985, 9, 861-865. doi: 10.1016/0362-546X(85)90023-9

    CrossRef Google Scholar

    [2] P. Bates, K. Lu and B. Wang, Attractors of non-autonomous stochastic lattice systems in weighted spaces, Phys. D, 2014, 289, 32-50. doi: 10.1016/j.physd.2014.08.004

    CrossRef Google Scholar

    [3] T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond., 1972, 272, 47-78. doi: 10.1098/rsta.1972.0032

    CrossRef Google Scholar

    [4] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete Contin. Dyn. Syst.Ser. B, 2012, 14, 439-455.

    Google Scholar

    [5] T. Caraballo, J. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems generated by random differential inclusions with multiplicative noise, J. Math. Anal. Appl., 2001, 260, 602-622. doi: 10.1006/jmaa.2001.7497

    CrossRef Google Scholar

    [6] H. Cui and P. E. Kloeden, Tail convergences of pullback attractors for asymptotically converging multi-valued dynamical systems, Asymptotic Anal., 2019, 112, 165-184. doi: 10.3233/ASY-181501

    CrossRef Google Scholar

    [7] H. Cui, J. A. Langa and Y. Li, Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness, Nonlinear Anal., 2016, 140, 208-235. doi: 10.1016/j.na.2016.03.012

    CrossRef Google Scholar

    [8] H. Cui, J. A. Langa and Y. Li, Measurability of random attractors for quasi strong-to-weak continuous random dynamical systems, J. Dynam. Diff. Eqs., 2018, 30, 1873-1898. doi: 10.1007/s10884-017-9617-z

    CrossRef Google Scholar

    [9] H. Cui, Y. Li and J. Yin, Long time behavior of stochastic MHD equations perturbed by multiplicative noises, J. Appl. Anal. Comput., 2016, 6(4), 1081-1104.

    Google Scholar

    [10] A. O. Celebi, V. K. Kalantarov and M. Polat, Attractors for the generalized Benjamin-Bona-Mahony equation, J. Diff. Eqs., 1999, 157, 439-451. doi: 10.1006/jdeq.1999.3634

    CrossRef Google Scholar

    [11] A. Gu and P. E. Kloeden, Asymptotic behavior of a nonautonomous $p$-Laplacian lattice system, Intern. J. Bifur. Chaos, 2016, 26(10). DOI: 10.1142/S0218127416501741.

    CrossRef Google Scholar

    [12] J. A. Goldstein and B. J. Wichnoski, On the Benjamin-Bona-Mahony equation in higher dimensions, Nonlinear Anal., 1980, 4, 665-675. doi: 10.1016/0362-546X(80)90067-X

    CrossRef Google Scholar

    [13] X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 2011, 376, 481-493. doi: 10.1016/j.jmaa.2010.11.032

    CrossRef Google Scholar

    [14] J. Kang, Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations, Appl. Math. Comput., 2016, 274, 343-352.

    Google Scholar

    [15] P. E. Kloeden and J. Simsen, Attractors of asymptotically autonomous quasi-linear parabolic equation with spatially variable exponents, J. Math. Anal. Appl., 2015, 425, 911-918. doi: 10.1016/j.jmaa.2014.12.069

    CrossRef Google Scholar

    [16] P. E. Kloeden, J. Simsen and M. S. Simsen, Asymptotically autonomous multivalued cauchy problems with spatially variable exponents, J. Math. Anal. Appl., 2017, 445, 513-531. doi: 10.1016/j.jmaa.2016.08.004

    CrossRef Google Scholar

    [17] P. E. Kloeden and T. Lorenz, Construction of nonautonomous forward attractors, Proc. Amer. Math. Soc., 2016, 144, 259-268.

    Google Scholar

    [18] A. Krause, L. Michael and B. X. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise, Appl. Math. Comput., 2014, 246, 365-376.

    Google Scholar

    [19] A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains, J. Math. Anal. Appl., 2014, 417, 1018-1038. doi: 10.1016/j.jmaa.2014.03.037

    CrossRef Google Scholar

    [20] J. A. Langa and J. C. Robinson, A. Suárez, Forwards and pullback behaviour of a non-autonomous Lotka-Volterra system, Nonlinearity, 2003, 16, 1277-1293. doi: 10.1088/0951-7715/16/4/305

    CrossRef Google Scholar

    [21] Y. Li, A. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations, J. Diff. Eqs., 2015, 258, 504-534. doi: 10.1016/j.jde.2014.09.021

    CrossRef Google Scholar

    [22] Y. Li and B. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations, J. Diff. Eqs., 2008, 245, 1775-1800. doi: 10.1016/j.jde.2008.06.031

    CrossRef Google Scholar

    [23] Y. Li, L. She and R. Wang, Asymptotically autonomous dynamics for parabolic equations, J. Math. Anal. Appl., 2018, 459, 1106-1123. doi: 10.1016/j.jmaa.2017.11.033

    CrossRef Google Scholar

    [24] Y. Li, L. She and J. Yin, Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE, Discrete Contin. Dyn. Syst. Ser. B, 2018, 23, 1535-1557.

    Google Scholar

    [25] Y. Li and R. Wang, Random attractors for 3D Benjamin-Bona-Mahony equations derived by a Laplace-multiplier noise, Stoch. Dyn., 2018. DOI: 10.1142/S0219493718500041.

    CrossRef Google Scholar

    [26] Y. Li, R. Wang and J. Yin, Backward compact attractors for non-autonomous Benjamin-Bona-Mahony equations on unbounded channels, Discrete Contin. Dyn. Syst. Ser. B, 2017, 22, 2569-2586.

    Google Scholar

    [27] Y. Li and S. Yang, Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise, Commun Pure Appl Anal., 2019, 18, 1155-1175. doi: 10.3934/cpaa.2019056

    CrossRef Google Scholar

    [28] Y. Li and J. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations, Discrete Contin. Dyn. Syst. Ser. B, 2016, 21, 1203-1223. doi: 10.3934/dcdsb.2016.21.1203

    CrossRef Google Scholar

    [29] M. Stanislavova, A. Stefanov and B. Wang, Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on $\mathbb{R}$3, J. Diff. Eqs., 2005, 219, 451-483. doi: 10.1016/j.jde.2005.08.004

    CrossRef $\mathbb{R}$3" target="_blank">Google Scholar

    [30] B. Wang, Asymptotic behavior of stochastic wave equations with critical exponents on R3, Tran. Amer. Math. Soc., 2011, 363, 3639-3663. doi: 10.1090/S0002-9947-2011-05247-5

    CrossRef Google Scholar

    [31] B. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony equation on unbounded domains, J. Diff. Eqs., 2009, 246, 2506-2537. doi: 10.1016/j.jde.2008.10.012

    CrossRef Google Scholar

    [32] B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Diff. Eqs., 2012, 253, 1544-1583. doi: 10.1016/j.jde.2012.05.015

    CrossRef Google Scholar

    [33] B. Wang and W. Yang, Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation, Physics A, 1997, 30, 4877-4885. doi: 10.1088/0305-4470/30/13/035

    CrossRef Google Scholar

    [34] J. Wang and A. Gu, Existence of backwards-compact pullback attractors for non-autonomous lattice dynamical systems, J. Differ. Equ. Appl., 2016, 22, 1906-1911. doi: 10.1080/10236198.2016.1254205

    CrossRef Google Scholar

    [35] R. Wang and Y. Li, Backward compactness and periodicity of random attractors for stochastic wave equations with varying coefficients, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24, 4145-4167.

    Google Scholar

    [36] S. Wang and Y. Li, Longtime robustness of pullback random attractors for stochastic magneto-hydrodynamics equations, Physica D, 2018, 382, 46-57.

    Google Scholar

    [37] Z. Wang and S. Zhou, Random attractor for non-autonomous stochastic strongly damped wave equation on unbounded domains, J. Appl. Anal. Comput., 2015, 5(3), 363-387. doi: 10.11948/2015031

    CrossRef Google Scholar

    [38] J. Yin, A. Gu and Y. Li, Backwards compact attractors for non-autonomous damped 3D Navier-Stokes equations, Dynamics of PDE, 2017, 14, 201-218.

    Google Scholar

    [39] J. Yin, Y. Li and H. Cui, Box-counting dimensions and upper semicontinuities of bi-spatial attractors for stochastic degenerate parabolic equations on an unbounded domain, J. Math. Anal. Appl., 2017, 450, 1180-1207. doi: 10.1016/j.jmaa.2017.01.064

    CrossRef Google Scholar

    [40] J. Yin, Y. Li and A. Gu, Backwards compact attractors and periodic attractors for non-autonomous damped wave equations on an unbounded domain, Comput. Math. Appl., 2017, 74, 744-758. doi: 10.1016/j.camwa.2017.05.015

    CrossRef Google Scholar

    [41] J. Yin, Y. Li and A. Gu, Regularity of pullback attractors for non-autonomous stochastic coupled reaction-diffusion systems, J. Appl. Anal. Comput. 2017, 7(3), 884-898.

    Google Scholar

    [42] Y. You, Robustness of random attractors for a stochastic reaction-diffusion system, J. Appl. Anal. Comput., 2016, 6(4), 1000-1022.

    Google Scholar

    [43] W. Zhao and A. Gu, Regularity of pullback attractors and random equilibrium for non-autonomous stochastic FitzHugh-Nagumo system on unbounded domains, J. Appl. Anal. Comput., 2017, 7(4), 1285-1311.

    Google Scholar

    [44] S. Zhou, Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in R3, J. Diff. Eqs., 2017, 263, 6347-6383. doi: 10.1016/j.jde.2017.07.013

    CrossRef Google Scholar

Article Metrics

Article views(3096) PDF downloads(651) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint