2021 Volume 11 Issue 1
Article Contents

Bikramjeet Kaur, R.K. Gupta. DISPERSION AND FRACTIONAL LIE GROUP ANALYSIS OF TIME FRACTIONAL EQUATION FROM BURGERS HIERARCHY[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 1-22. doi: 10.11948/20180152
Citation: Bikramjeet Kaur, R.K. Gupta. DISPERSION AND FRACTIONAL LIE GROUP ANALYSIS OF TIME FRACTIONAL EQUATION FROM BURGERS HIERARCHY[J]. Journal of Applied Analysis & Computation, 2021, 11(1): 1-22. doi: 10.11948/20180152

DISPERSION AND FRACTIONAL LIE GROUP ANALYSIS OF TIME FRACTIONAL EQUATION FROM BURGERS HIERARCHY

  • The paper presents the analysis of time fractional $ 5^{th} $ order equation from Burgers hierarchy. We discuss the dispersion relation and provide the complete analysis of the phase velocity and group velocity along with the nature of wave dispersion. Similarity reductions are carried out using infinitesimal symmetries to obtain nonlinear fractional ordinary differential equations having Erd$ \acute{e} $lyi-Kober fractional differential operator. The explicit power series solution is obtained for reduced fractional ordinary differential equation and its convergence is discussed. The solution is appeared in the form of singular kink wave and further analysed graphically for various values of fractional order $ \alpha $. The new conservation theorem is applied to derive the conservation laws.
    MSC: 34A08, 35B06, 70S10, 81U30, 35L65, 35C10
  • 加载中
  • [1] E. A. B. Abdel Salam and G. F. Hassan, Multiwave solutions of fractional 4th and 5th order Burgers equations., Tur. J. Phys., 2015, 39(3), 227-241.

    Google Scholar

    [2] A. Abourabia, K. Hassan and E. Selima, Painlevé analysis and new analytical solutions for compound KdV-Burgers equation with variable coefficients, Can. J. Phys., 2010, 88(3), 211-221. doi: 10.1139/P10-003

    CrossRef Google Scholar

    [3] A. Abourabia and A. Morad, Exact traveling wave solutions of the van der Waals normal form for fluidized granular matter, Physica A, 2015, 437, 333-350. doi: 10.1016/j.physa.2015.06.005

    CrossRef Google Scholar

    [4] S. C. Anco and G. Bluman, Direct construction method for conservation laws of partial differential equations Part Ⅰ: Examples of conservation law classifications, Eur. J. Appl. Math., 2002, 13(5), 545-566. doi: 10.1017/S095679250100465X

    CrossRef Google Scholar

    [5] T. M. Atanacković, S. Konjik, S. Pilipović and S. Simić, Variational problems with fractional derivatives: Invariance conditions and Noether's theorem, Nonlinear Anal., 2009, 71(5), 1504-1517.

    Google Scholar

    [6] A. Bekir, Ö. Güner and A. C. Cevikel, Fractional complex transform and expfunction methods for fractional differential equations, Abstr. Appl. Anal., 2013, 2013.

    Google Scholar

    [7] A. Bekir, Ö. Güner and Ö. Unsal, The first integral method for exact solutions of nonlinear fractional differential equations, J. Comput. Nonlinear Dyn., 2015, 10(2), 021020. doi: 10.1115/1.4028065

    CrossRef Google Scholar

    [8] Z. Bin, G'/G-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys., 2012, 58(5), 623. doi: 10.1088/0253-6102/58/5/02

    CrossRef Google Scholar

    [9] A. Biswas, Solitary wave solution for the generalized KdV equation with timedependent damping and dispersion, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(9-10), 3503-3506. doi: 10.1016/j.cnsns.2008.09.026

    CrossRef Google Scholar

    [10] G. W. Bluman and J. D. Cole, Similarity methods for differential equations, Springer-Verlag, Berlin, 1974.

    Google Scholar

    [11] G. W. Bluman and S. Kumei, Symmetries and differential equations, SpringerVerlag, New York, 1989.

    Google Scholar

    [12] L. Bourdin, J. Cresson and I. Greff, A continuous/discrete fractional Noethers theorem, Commun. Nonlinear Sci. Numer. Simul., 2013, 18(4), 878-887. doi: 10.1016/j.cnsns.2012.09.003

    CrossRef Google Scholar

    [13] I. Colombaro, A. Giusti and F. Mainardi, Wave dispersion in the linearised fractional Korteweg-de Vries equation, arXiv preprint arXiv: 1704.02508, 2017.

    Google Scholar

    [14] A. Fokas and L. Luo, On the asymptotic integrability of a generalized Burgers equation, Contemp. Math., 1996, 200, 85-98.

    Google Scholar

    [15] G. S. F. Frederico and D. F. M. Torres, A formulation of Noether's theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl., 2007, 334(2), 834-846. doi: 10.1016/j.jmaa.2007.01.013

    CrossRef Google Scholar

    [16] V. A. Galaktionov and S. R. Svirshchevskii, Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, CRC Press, 2006.

    Google Scholar

    [17] R. K. Gazizov, N. H. Ibragimov and S. Y. Lukashchuk, Nonlinear selfadjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. Numer. Simul., 2015, 23(1), 153-163.

    Google Scholar

    [18] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Continuous transformation groups of fractional differential equations, USATU, 2007, 9(3), 21.

    Google Scholar

    [19] R. K. Gazizov, A. A. Kasatkin and S. Y. Lukashchuk, Symmetry properties of fractional diffusion equations, Phys. Scr., 2009, 2009(T136), 014016.

    Google Scholar

    [20] V. Gerdjikov, G. Vilasi and A. B. Yanovski, Integrable hamiltonian hierarchies, Springer, Berlin, 2008.

    Google Scholar

    [21] A. Giusti, Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation, J. Math. Phys., 2018, 59(1), 013506. doi: 10.1063/1.5001555

    CrossRef Google Scholar

    [22] M. S. Hashemi, Group analysis and exact solutions of the time fractional Fokker-Planck equation, Physica A, 2015, 417, 141-149. doi: 10.1016/j.physa.2014.09.043

    CrossRef Google Scholar

    [23] Q. Huang and R. Zhdanov, Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative, Physica A, 2014, 409, 110-118. doi: 10.1016/j.physa.2014.04.043

    CrossRef Google Scholar

    [24] N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl., 2007, 333(1), 311-328. doi: 10.1016/j.jmaa.2006.10.078

    CrossRef Google Scholar

    [25] M. Inc, A. Yusuf, A. I. Aliyu et al., Lie symmetry analysis and explicit solutions for the time fractional generalized Burgers-Huxley equation, Opt. Quantum.Electron., 2018, 50(2), 94. doi: 10.1007/s11082-018-1373-8

    CrossRef Google Scholar

    [26] M. Inc, A. Yusuf, A. I. Aliyu et al., Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations, Physica A, 2018, 496, 371-383. doi: 10.1016/j.physa.2017.12.119

    CrossRef Google Scholar

    [27] M. Inc, A. Yusuf, A. I. Aliyu et al., Time-fractional cahn-allen and timefractional Klein-Gordon equations: lie symmetry analysis, explicit solutions and convergence analysis, Physica A, 2018, 493, 94-106. doi: 10.1016/j.physa.2017.10.010

    CrossRef Google Scholar

    [28] H. Jafari, N. Kadkhoda and D. Baleanu, Fractional Lie group method of the time-fractional Boussinesq equation, Nonlinear Dyn., 2015, 81(3), 1569-1574. doi: 10.1007/s11071-015-2091-4

    CrossRef Google Scholar

    [29] G. F. Jefferson and J. Carminati, FracSym: Automated symbolic computation of Lie symmetries of fractional differential equations, Comput. Phys. Commun., 2014, 185(1), 430-441. doi: 10.1016/j.cpc.2013.09.019

    CrossRef Google Scholar

    [30] A. H. Kara and F. M. Mahomed, Noether-type symmetries and conservation laws via partial Lagrangians, Nonlinear Dyn., 2006, 45(3), 367-383.

    Google Scholar

    [31] B. Kaur and R. K. Gupta, Invariance properties, conservation laws, and soliton solutions of the time-fractional (2+1)-dimensional new coupled ZK system in magnetized dusty plasmas, Comput. Appl. Math., 2018, 37(5), 5981-6004. doi: 10.1007/s40314-018-0674-7

    CrossRef Google Scholar

    [32] B. Kaur and R. K. Gupta, Dispersion analysis and improved F-expansion method for space-time fractional differential equations, Nonlinear Dyn., 2019, 96(2), 837-852. doi: 10.1007/s11071-019-04825-w

    CrossRef Google Scholar

    [33] B. Kaur and R. K. Gupta, Multiple types of exact solutions and conservation laws of new coupled (2+1)-dimensional Zakharov-Kuznetsov system with timedependent coefficients, Pramana −J. Phys., 2019, 93(4), 59. doi: 10.1007/s12043-019-1806-3

    CrossRef Google Scholar

    [34] B. Kaur and R. K. Gupta, Time fractional (2+1)-dimensional Wu-Zhang system: Dispersion analysis, similarity reductions, conservation laws, and exact solutions, Comput. Math. Appl., 2020, 79(4), 1031-1048. doi: 10.1016/j.camwa.2019.08.014

    CrossRef Google Scholar

    [35] T. Kawahara, Formation of saturated solitons in a nonlinear dispersive system with instability and dissipation, Phys. Rev. Lett., 1983, 51(5), 381. doi: 10.1103/PhysRevLett.51.381

    CrossRef Google Scholar

    [36] A. Kilbas, H. Srivastava and J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Boston, 2006.

    Google Scholar

    [37] V. S. Kiryakova, Generalized fractional calculus and applications, Pitman Research Notes in Mathematics Series (Longman Scientific & Technical, Longman Group, UK), 1994.

    Google Scholar

    [38] R. A. Kraenkel, J. Pereira and E. de Rey Neto, Linearizability of the perturbed burgers equation, Phys. Rev. E, 1998, 58(2), 2526. doi: 10.1103/PhysRevE.58.2526

    CrossRef Google Scholar

    [39] N. A. Kudryashov and D. I. Sinelshchikov, Extended models of non-linear waves in liquid with gas bubbles, Int. J. Non Linear Mech., 2014, 63, 31-38. doi: 10.1016/j.ijnonlinmec.2014.03.011

    CrossRef Google Scholar

    [40] S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 2015, 80(1-2), 791-802. doi: 10.1007/s11071-015-1906-7

    CrossRef Google Scholar

    [41] F. Mainardi, On signal velocity for anomalous dispersive waves, Il Nuovo Cimento B (1971-1996), 1983, 74(1), 52-58. doi: 10.1007/BF02721684

    CrossRef Google Scholar

    [42] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, London-Singapore, 2010.

    Google Scholar

    [43] A. B. Malinowska, A formulation of the fractional Noether-type theorem for multidimensional Lagrangians, Appl. Math. Lett., 2012, 25(11), 1941-1946. doi: 10.1016/j.aml.2012.03.006

    CrossRef Google Scholar

    [44] K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993.

    Google Scholar

    [45] E. Noether, Invariante variationsprobleme, Nachr. d. König. Gesellsch. d. Wiss.zu Göttingen, Math-phys. Klasse, 1918, 1(3), 235-257.

    Google Scholar

    [46] T. Odzijewicz, A. Malinowska and D. Torres, Noethers theorem for fractional variational problems of variable order, Cent. Eur. J. Phys., 2013, 11(6), 691-701.

    Google Scholar

    [47] K. B. Oldham and J. Spanier, The Fractional Calculus, vol. 111 of Mathematics in science and engineering, Academic Press, New York, London, 1974.

    Google Scholar

    [48] P. J. Olver, Applications of Lie groups to differential equations, 107, Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

    Google Scholar

    [49] I. Podlubny, Fractional Differential Equations, Academic press, 1999.

    Google Scholar

    [50] P. Prakash and R. Sahadevan, Lie symmetry analysis and exact solution of certain fractional ordinary differential equations, Nonlinear Dyn., 2017, 89(1), 305-319. doi: 10.1007/s11071-017-3455-8

    CrossRef Google Scholar

    [51] C. Qin, S. Tian, X. Wang and T. Zhang, Lie symmetries, conservation laws and explicit solutions for time fractional Rosenau-Haynam equation, Commun. Theor. Phys., 2017, 67(2), 157. doi: 10.1088/0253-6102/67/2/157

    CrossRef Google Scholar

    [52] W. Rudin, Principles of Mathematical Analysis, China Machine Press, Beijing, 2004.

    Google Scholar

    [53] W. Rui and X. Zhang, Lie symmetries and conservation laws for the time fractional Derrida-Lebowitz-Speer-Spohn equation, Commun. Nonlinear Sci. Numer. Simul., 2016, 34, 38-44. doi: 10.1016/j.cnsns.2015.10.004

    CrossRef Google Scholar

    [54] R. Sahadevan and T. Bakkyaraj, Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations, J. Math. Anal. Appl., 2012, 393(2), 341-347. doi: 10.1016/j.jmaa.2012.04.006

    CrossRef Google Scholar

    [55] S. G. Samko, A. A. Kilbas, O. I. Marichev et al., Fractional integrals and derivatives, 1993, Theory and Applications, Gordon and Breach, Yverdon, 1993.

    Google Scholar

    [56] K. Singla and R. Gupta, On invariant analysis of space-time fractional nonlinear systems of partial differential equations. ii, J. Math. Phys., 2017, 58(5), 051503. doi: 10.1063/1.4982804

    CrossRef Google Scholar

    [57] K. Singla and R. K. Gupta, On invariant analysis of some time fractional nonlinear systems of partial differential equations. I, J. Math. Phys., 2016, 57(10), 101504. doi: 10.1063/1.4964937

    CrossRef Google Scholar

    [58] K. Singla and R. K. Gupta, Generalized Lie symmetry approach for fractional order systems of differential equations. Ⅲ, J. Math. Phys., 2017, 58(6), 061501. doi: 10.1063/1.4984307

    CrossRef Google Scholar

    [59] G. Wang, A. H. Kara and K. Fakhar, Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation, Nonlinear Dyn., 2015, 82(1-2), 281-287. doi: 10.1007/s11071-015-2156-4

    CrossRef Google Scholar

    [60] G. Wang and T. Xu, Invariant analysis and exact solutions of nonlinear time fractional Sharma-Tasso-Olver equation by Lie group analysis, Nonlinear Dyn., 2014, 76(1), 571-580. doi: 10.1007/s11071-013-1150-y

    CrossRef Google Scholar

    [61] A. M. Wazwaz, Partial differential equations and solitary waves theory, 2009.

    Google Scholar

    [62] A. M. Wazwaz, Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions, J. Franklin Inst., 2010, 347(3), 618-626. doi: 10.1016/j.jfranklin.2010.01.003

    CrossRef Google Scholar

    [63] G. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York(1974), Wiley, New York, 1974.

    Google Scholar

    [64] E. Yaşsar, Y. Yıldırım and C. M. Khalique, Lie symmetry analysis, conservation laws and exact solutions of the seventh-order time fractional Sawada-Kotera- Ito equation, Results Phys., 2016, 6, 322-328. doi: 10.1016/j.rinp.2016.06.003

    CrossRef Google Scholar

    [65] F. You and T. Xia, The integrable couplings of the generalized coupled Burgers hierarchy and its Hamiltonian structures, Chaos Solitons Fractals, 2008, 36(4), 953-960. doi: 10.1016/j.chaos.2006.07.029

    CrossRef Google Scholar

    [66] S. Zhang and H. Zhang, Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, 2011, 375(7), 1069-1073. doi: 10.1016/j.physleta.2011.01.029

    CrossRef Google Scholar

Figures(9)

Article Metrics

Article views(3461) PDF downloads(287) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint