2019 Volume 9 Issue 1
Article Contents

Jingliang Lv, Heng Liu, Xiaoling Zou. STATIONARY DISTRIBUTION AND PERSISTENCE OF A STOCHASTIC PREDATOR-PREY MODEL WITH A FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 1-11. doi: 10.11948/2019.1
Citation: Jingliang Lv, Heng Liu, Xiaoling Zou. STATIONARY DISTRIBUTION AND PERSISTENCE OF A STOCHASTIC PREDATOR-PREY MODEL WITH A FUNCTIONAL RESPONSE[J]. Journal of Applied Analysis & Computation, 2019, 9(1): 1-11. doi: 10.11948/2019.1

STATIONARY DISTRIBUTION AND PERSISTENCE OF A STOCHASTIC PREDATOR-PREY MODEL WITH A FUNCTIONAL RESPONSE

  • Corresponding author: Email address:ljl3188@163.com(J. Lv) 
  • Fund Project: This work is supported by the National Natural Science Foundation of P. R. China (No. 11501148) and Shandong Provincial Natural Science Foundation (No. ZR2015AQ002)
  • A stochastic predator-prey model with a functional response is investigated in this paper. The asymptotic properties of the stochastic model are considered here. Under some conditions, we show that the stochastic model is persistent in mean. Moreover, the existence of stationary distribution to the model is obtained. Simulations are also carried out to confirm our analytical results.
    MSC: 60H10, 60G10
  • 加载中
  • [1] J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 1977, 197, 463-465. doi: 10.1126/science.197.4302.463

    CrossRef Google Scholar

    [2] P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc. 1989, 8, 211-221. doi: 10.2307/1467324

    CrossRef Google Scholar

    [3] N. H. Du and V. H. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J. Math. Anal. Appl., 2006, 32, 482-497.

    Google Scholar

    [4] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.

    Google Scholar

    [5] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Maryland, 1980.

    Google Scholar

    [6] D. J. Higham, Higham DJ. An algorithmic introduction to numerical simulation of stochastic differential equations, Siam Rev., 2001, 43, 525-546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [7] C. Ji, D. Jiang and X. Li, Qualitative analysis of a stochastic ratio-dependent predator-prey system, J. Comput. Appl. Math., 2010, 235, 1326-1341.

    Google Scholar

    [8] D. Jiang, N. Z. Shi and X. Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2008, 340, 588-597. doi: 10.1016/j.jmaa.2007.08.014

    CrossRef Google Scholar

    [9] S. Li, J. H. Wu and Y. Y. Dong, Uniqueness and stability of a predator-prey model with C-M functional response, Comput. Math. Appl., 2015, 69, 1080- 1095. doi: 10.1016/j.camwa.2015.03.007

    CrossRef Google Scholar

    [10] M. Liu and K. Wang, Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response, Commun. Nonlinear Sci., 2011, 16, 1114-1121. doi: 10.1016/j.cnsns.2010.06.015

    CrossRef Google Scholar

    [11] X. Li and X. Mao, Population dynamical behavior of non-autonomous LotkaVolterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 2009, 24, 523-545. doi: 10.3934/dcdsa

    CrossRef Google Scholar

    [12] M. Liu and K. Wang, Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system, Appl. Math. Lett., 2012, 25, 1980-1985. doi: 10.1016/j.aml.2012.03.015

    CrossRef Google Scholar

    [13] D. Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Stat. Probabil. Lett., 2013, 83, 580-583. doi: 10.1016/j.spl.2012.11.006

    CrossRef Google Scholar

    [14] J. L. Lv and K. Wang, Asymptotic properties of a stochastic predator-prey system with Holling Ⅱ functional response, Commun. Nonlinear Sci., 2011, 16, 4037-4048. doi: 10.1016/j.cnsns.2011.01.015

    CrossRef Google Scholar

    [15] M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-predator model with random perturbations, Commun. Nonlinear Sci., 2015, 28, 123-137. doi: 10.1016/j.cnsns.2015.04.010

    CrossRef Google Scholar

    [16] Q. Liu, Z. Li and D. Q. Jiang, Dynamics of stochastic predatorCprey models with Holling Ⅱ functional response, Commun. Nonlinear Sci., 2016, 37, 62-76. doi: 10.1016/j.cnsns.2016.01.005

    CrossRef Google Scholar

    [17] X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0

    CrossRef Google Scholar

    [18] X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of stochastic LotkaVolterra model, J. Math. Anal. Appl., 2003, 287, 141-156. doi: 10.1016/S0022-247X(03)00539-0

    CrossRef Google Scholar

    [19] X. R. Mao, Stochastic Differential Equations And Applications (Second Edition), Horwood Publishing, Chichester, 2007.

    Google Scholar

    [20] I. NÅsell, Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol., 2001, 211, 11-27. doi: 10.1006/jtbi.2001.2328

    CrossRef Google Scholar

    [21] X. Y. Shi, X. Y. Zhou and X. Y. Song, Analysis of a stage-structured predatorprey model with Crowley-Martin function, J. Comput. Appl. Math., 2011, 36, 459-472. doi: 10.1007/s12190-010-0413-8

    CrossRef Google Scholar

    [22] G. T. Skalski and J. F. Gilliam, Functional response with redator interference: viable alternatives to the Holling type Ⅱ model, Ecology, 2001, 82, 3083-3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2

    CrossRef Google Scholar

    [23] J. Y. Tong, Z. Z. Zhang and J. H. Bao, The stationary distribution of the facultative population model with a degenerate noise, Stat. Probabil. Lett., 2013, 83, 655-664. doi: 10.1016/j.spl.2012.11.003

    CrossRef Google Scholar

    [24] J. P. Tripathi, S. Tyagi and S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci., 2016, 30, 45-69. doi: 10.1016/j.cnsns.2015.06.008

    CrossRef Google Scholar

    [25] R. K. Upadhyay and R. K. Naji, Dynamics of a three species food chain model with Crowley-Martin type functional response, Chaos Soliton Fract., 2009, 42, 1337-1346. doi: 10.1016/j.chaos.2009.03.020

    CrossRef Google Scholar

    [26] M. X. Wang and Q. Wu, Positive solutions of a predator-prey model with predator saturation and competition, J. Math. Anal. Appl., 2008, 345, 708-718. doi: 10.1016/j.jmaa.2008.04.054

    CrossRef Google Scholar

    [27] M. H. Wei, J. H. Wu and G. H. Guo, The effect of predator competition on positive solutions for a predator-prey model with diffusion, Nonlinear Anal., 2012, 75, 5053-5068. doi: 10.1016/j.na.2012.04.021

    CrossRef Google Scholar

    [28] X. L. Zou, D. J. Fan and K. Wang, Stationary distribution and stochastic hopf bifurcation for a predator-prey system with noises, Discrete Cont. Dyn.-B, 2013, 18, 1507-1519. doi: 10.3934/dcdsb

    CrossRef Google Scholar

    [29] X. L. Zhou, W. G. Zhang and S. L. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 2014, 244, 118-131.

    Google Scholar

    [30] C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 2009, 71, e1370-e1379. doi: 10.1016/j.na.2009.01.166

    CrossRef Google Scholar

    [31] Y. Zhang, S. Gao, K. Fan and Y. Dai, On the dynamics of a stochastic ratiodependent predator-prey model with a specific functional response, J. Appl. Math. Comput., 2015, 48, 441-460. doi: 10.1007/s12190-014-0812-3

    CrossRef Google Scholar

    [32] C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control. Optim., 2007, 46, 1155-1179. doi: 10.1137/060649343

    CrossRef Google Scholar

Article Metrics

Article views(3594) PDF downloads(1282) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint