[1]
|
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment, Science, 1977, 197, 463-465. doi: 10.1126/science.197.4302.463
CrossRef Google Scholar
|
[2]
|
P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. N. Am. Benthol. Soc. 1989, 8, 211-221. doi: 10.2307/1467324
CrossRef Google Scholar
|
[3]
|
N. H. Du and V. H. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J. Math. Anal. Appl., 2006, 32, 482-497.
Google Scholar
|
[4]
|
H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980.
Google Scholar
|
[5]
|
R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Maryland, 1980.
Google Scholar
|
[6]
|
D. J. Higham, Higham DJ. An algorithmic introduction to numerical simulation of stochastic differential equations, Siam Rev., 2001, 43, 525-546. doi: 10.1137/S0036144500378302
CrossRef Google Scholar
|
[7]
|
C. Ji, D. Jiang and X. Li, Qualitative analysis of a stochastic ratio-dependent predator-prey system, J. Comput. Appl. Math., 2010, 235, 1326-1341.
Google Scholar
|
[8]
|
D. Jiang, N. Z. Shi and X. Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 2008, 340, 588-597. doi: 10.1016/j.jmaa.2007.08.014
CrossRef Google Scholar
|
[9]
|
S. Li, J. H. Wu and Y. Y. Dong, Uniqueness and stability of a predator-prey model with C-M functional response, Comput. Math. Appl., 2015, 69, 1080- 1095. doi: 10.1016/j.camwa.2015.03.007
CrossRef Google Scholar
|
[10]
|
M. Liu and K. Wang, Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response, Commun. Nonlinear Sci., 2011, 16, 1114-1121. doi: 10.1016/j.cnsns.2010.06.015
CrossRef Google Scholar
|
[11]
|
X. Li and X. Mao, Population dynamical behavior of non-autonomous LotkaVolterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 2009, 24, 523-545. doi: 10.3934/dcdsa
CrossRef Google Scholar
|
[12]
|
M. Liu and K. Wang, Stationary distribution, ergodicity and extinction of a stochastic generalized logistic system, Appl. Math. Lett., 2012, 25, 1980-1985. doi: 10.1016/j.aml.2012.03.015
CrossRef Google Scholar
|
[13]
|
D. Li, The stationary distribution and ergodicity of a stochastic generalized logistic system, Stat. Probabil. Lett., 2013, 83, 580-583. doi: 10.1016/j.spl.2012.11.006
CrossRef Google Scholar
|
[14]
|
J. L. Lv and K. Wang, Asymptotic properties of a stochastic predator-prey system with Holling Ⅱ functional response, Commun. Nonlinear Sci., 2011, 16, 4037-4048. doi: 10.1016/j.cnsns.2011.01.015
CrossRef Google Scholar
|
[15]
|
M. Liu and P. S. Mandal, Dynamical behavior of a one-prey two-predator model with random perturbations, Commun. Nonlinear Sci., 2015, 28, 123-137. doi: 10.1016/j.cnsns.2015.04.010
CrossRef Google Scholar
|
[16]
|
Q. Liu, Z. Li and D. Q. Jiang, Dynamics of stochastic predatorCprey models with Holling Ⅱ functional response, Commun. Nonlinear Sci., 2016, 37, 62-76. doi: 10.1016/j.cnsns.2016.01.005
CrossRef Google Scholar
|
[17]
|
X. Mao, G. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 2002, 97, 95-110. doi: 10.1016/S0304-4149(01)00126-0
CrossRef Google Scholar
|
[18]
|
X. Mao, S. Sabanis and E. Renshaw, Asymptotic behaviour of stochastic LotkaVolterra model, J. Math. Anal. Appl., 2003, 287, 141-156. doi: 10.1016/S0022-247X(03)00539-0
CrossRef Google Scholar
|
[19]
|
X. R. Mao, Stochastic Differential Equations And Applications (Second Edition), Horwood Publishing, Chichester, 2007.
Google Scholar
|
[20]
|
I. NÅsell, Extinction and quasi-stationarity in the Verhulst logistic model, J. Theor. Biol., 2001, 211, 11-27. doi: 10.1006/jtbi.2001.2328
CrossRef Google Scholar
|
[21]
|
X. Y. Shi, X. Y. Zhou and X. Y. Song, Analysis of a stage-structured predatorprey model with Crowley-Martin function, J. Comput. Appl. Math., 2011, 36, 459-472. doi: 10.1007/s12190-010-0413-8
CrossRef Google Scholar
|
[22]
|
G. T. Skalski and J. F. Gilliam, Functional response with redator interference: viable alternatives to the Holling type Ⅱ model, Ecology, 2001, 82, 3083-3092. doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
CrossRef Google Scholar
|
[23]
|
J. Y. Tong, Z. Z. Zhang and J. H. Bao, The stationary distribution of the facultative population model with a degenerate noise, Stat. Probabil. Lett., 2013, 83, 655-664. doi: 10.1016/j.spl.2012.11.003
CrossRef Google Scholar
|
[24]
|
J. P. Tripathi, S. Tyagi and S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci., 2016, 30, 45-69. doi: 10.1016/j.cnsns.2015.06.008
CrossRef Google Scholar
|
[25]
|
R. K. Upadhyay and R. K. Naji, Dynamics of a three species food chain model with Crowley-Martin type functional response, Chaos Soliton Fract., 2009, 42, 1337-1346. doi: 10.1016/j.chaos.2009.03.020
CrossRef Google Scholar
|
[26]
|
M. X. Wang and Q. Wu, Positive solutions of a predator-prey model with predator saturation and competition, J. Math. Anal. Appl., 2008, 345, 708-718. doi: 10.1016/j.jmaa.2008.04.054
CrossRef Google Scholar
|
[27]
|
M. H. Wei, J. H. Wu and G. H. Guo, The effect of predator competition on positive solutions for a predator-prey model with diffusion, Nonlinear Anal., 2012, 75, 5053-5068. doi: 10.1016/j.na.2012.04.021
CrossRef Google Scholar
|
[28]
|
X. L. Zou, D. J. Fan and K. Wang, Stationary distribution and stochastic hopf bifurcation for a predator-prey system with noises, Discrete Cont. Dyn.-B, 2013, 18, 1507-1519. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[29]
|
X. L. Zhou, W. G. Zhang and S. L. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 2014, 244, 118-131.
Google Scholar
|
[30]
|
C. Zhu and G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 2009, 71, e1370-e1379. doi: 10.1016/j.na.2009.01.166
CrossRef Google Scholar
|
[31]
|
Y. Zhang, S. Gao, K. Fan and Y. Dai, On the dynamics of a stochastic ratiodependent predator-prey model with a specific functional response, J. Appl. Math. Comput., 2015, 48, 441-460. doi: 10.1007/s12190-014-0812-3
CrossRef Google Scholar
|
[32]
|
C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control. Optim., 2007, 46, 1155-1179. doi: 10.1137/060649343
CrossRef Google Scholar
|