[1]
|
S. Aizicovici and E. Feireisl, Long-time stabilization of solutions to a phase-field model with memory, J. Evol. Equ. 2001, (1), 69-84.
Google Scholar
|
[2]
|
S. Aizicovici and E. Feireisl, Long-time convergence of solutions to a phase-field system, Math. Methods Appl. Sci. 2001, 24, 277-287. doi: 10.1002/(ISSN)1099-1476
CrossRef Google Scholar
|
[3]
|
A. Andami Ovono and A. Miranville, On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling, AIMS Mathematics 2016, 1(1), 24-42. doi: 10.3934/Math.2016.1.24
CrossRef Google Scholar
|
[4]
|
D. Brochet, X. Chen and D. Hilhorst, Finite dimensional exponential attractors for the phase-field model, Appl. Anal. 1993, 49, 197-212. doi: 10.1080/00036819108840173
CrossRef Google Scholar
|
[5]
|
M. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
Google Scholar
|
[6]
|
G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Ration. Mech. Anal. 1986, 92, 205-245. doi: 10.1007/BF00254827
CrossRef Google Scholar
|
[7]
|
M. Conti, S. Gatti and A. Miranville, A phase-field system with two temperatures and memory, Differential Integral Equations 2017, 30(1-2), 53-80.
Google Scholar
|
[8]
|
P.J Chen and M.E Gurtin, On a theory of heat involving two temperatures, J. Appl. Math. Phys. (ZAMP) 1968, 19, 614-627. doi: 10.1007/BF01594969
CrossRef Google Scholar
|
[9]
|
P.J Chen, M.E Gurtin, and W.O. Williams, A note on non-simple heat conduction, J. Appl. Math. Phys. (ZAMP) 1968, 19, 969-970. doi: 10.1007/BF01602278
CrossRef Google Scholar
|
[10]
|
P.J Chen, M.E Gurtin, and W.O. Williams, On the thermodynamics of nonsimple materials with two temperatures, J. Appl. Math. Phys. (ZAMP), 1069, 20, 107-112.
Google Scholar
|
[11]
|
L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 2007, 17, 107-129.
Google Scholar
|
[12]
|
L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 2009, 54, 89-115. doi: 10.1007/s10492-009-0008-6
CrossRef Google Scholar
|
[13]
|
R. Chill, E. Fasangová and J. Prüss, Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 2006, 279, 1448-1462. doi: 10.1002/(ISSN)1522-2616
CrossRef Google Scholar
|
[14]
|
C.I. Christov and P.M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 2005, 94, 154-301.
Google Scholar
|
[15]
|
B. Doumbé Bangola, Etude de modèles de champs de phase de type Caginalp, PhD thesis, Université de Poitiers, 2013.
Google Scholar
|
[16]
|
B. Doumbé Bangola, Global and exponential attractors for a Caginalp type phase-field problem, Cent. Eur. J. Math., 2013, 11(9), 1651-1676.
Google Scholar
|
[17]
|
A.S. El-Karamany and M.A. Ezzat, On the two-temperature Green-Nahdi thermoelasticity theories, J. Thermal Stresses, 2011, 34, 1207-1226. doi: 10.1080/01495739.2011.608313
CrossRef Google Scholar
|
[18]
|
J.N. Flavin, R.J. Knops and L.E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 1989, 47, 325- 350. doi: 10.1090/qam/1989-47-02
CrossRef Google Scholar
|
[19]
|
S. Gatti and A. Miranville, Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Differential Equations: Inverse and Direct Problems (Proceedings of the workshop "Evolution Equations: Inverse and Direct Problems ", Cortona, June 21-25, 2004), in A. Favini, A. Lorenzi (Eds), A Series of Lecture Notes in Pure and Applied Mathematics, Chapman Hall, 2006, 251, 149-170.
Google Scholar
|
[20]
|
C. Giorgi, M. Grasselli and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 1999, 48, 1395-1446.
Google Scholar
|
[21]
|
M. Grasseli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., 2007, 280, 1475-1509. doi: 10.1002/(ISSN)1522-2616
CrossRef Google Scholar
|
[22]
|
M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptot. Anal., 2008, 56, 229-249.
Google Scholar
|
[23]
|
M. Grasselli and V. Pata, Robust exponential attractors for a phase-field system with memory, J. Evol. Equ., 2005, 5, 465-483. doi: 10.1007/s00028-005-0199-6
CrossRef Google Scholar
|
[24]
|
M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 2006, 25, 51-73.
Google Scholar
|
[25]
|
M. Grasselli, H. Wu and S. Zheng, Asymptotic behavior of a non-isothermal Ginzburg-Landau model, Quart. Appl. Math., 2008, 66, 743-770. doi: 10.1090/qam/2008-66-04
CrossRef Google Scholar
|
[26]
|
A.E. Green and P.M. Naghdi, A new thermoviscous theory for fluids, J. NonNewtonian Fluid Mech., 1995, 56, 289-306. doi: 10.1016/0377-0257(94)01288-S
CrossRef Google Scholar
|
[27]
|
A.E. Green and P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond., 1991, A 432, 171-194.
Google Scholar
|
[28]
|
A.E. Green and P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 1992, 15, 253-264. doi: 10.1080/01495739208946136
CrossRef Google Scholar
|
[29]
|
J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 2008, 341, 149-169. doi: 10.1016/j.jmaa.2007.09.041
CrossRef Google Scholar
|
[30]
|
J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 2009, 32, 1156-1182. doi: 10.1002/mma.v32:9
CrossRef Google Scholar
|
[31]
|
Z. Liu and R. Quintanilla, Energy decay rate of a mixed type Ⅱ and type Ⅲ thermoelastic system, Discrete Contin. Dyn. Syst. Ser., 2010, 14(4), 1433-1444. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[32]
|
A. Magaña and R. Quintanilla, Exponential decay in nonsimple thermoelasticity of type Ⅲ, Math. Methods Appl. Sci., 2016, 39(2), 225-235. doi: 10.1002/mma.3472
CrossRef Google Scholar
|
[33]
|
Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect., 1996, A 126, 167-185.
Google Scholar
|
[34]
|
A. Miranville and R. Quintanilla, Some generalizations of the Caginalp phasefield system, Appl. Anal., 2009, 88, 877-894. doi: 10.1080/00036810903042182
CrossRef Google Scholar
|
[35]
|
A. Miranville, R. Quintanilla A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal., 2009, TMA 71, 2278-2290.
Google Scholar
|
[36]
|
A. Miranville and R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling, Nonlinear Anal: Real World Applications, 2010, 11, 2849-2861. doi: 10.1016/j.nonrwa.2009.10.008
CrossRef Google Scholar
|
[37]
|
A. Miranville and R. Quintanilla, A Caginalp phase-field system based on type Ⅲ heat conduction with two temperatures, Quart. Appl. Math., 2016, 74(2), 375-398. doi: 10.1090/qam/2016-74-02
CrossRef Google Scholar
|
[38]
|
A. Miranville and R. Quintanilla, On the Caginalp phase-field systems with two temperatures and the Maxwell-Cattaneo law, Math. Methods Appl. Sci., 2016, 39(15), 15, 4385-4397..
Google Scholar
|
[39]
|
A. Miranville and S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Diff. Equ. 2002, 1-28.
Google Scholar
|
[40]
|
A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C.M. Dafermos, M. Pokorny (Eds.), in: Handbook of Differential Equations, Evolutionary Partial Differential Equations, Elsevier, Amsterdam, 2008.
Google Scholar
|
[41]
|
A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl., 2002, 14, 73-107. doi: 10.1216/jiea/1031315435
CrossRef Google Scholar
|
[42]
|
R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the antiplane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 1996, 2, 423-435.
Google Scholar
|
[43]
|
R. Quintanilla, End effects in thermoelasticity, Math. Methods Appl. Sci., 2001, 24, 2001, 93-102.
Google Scholar
|
[44]
|
R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal Stresses, 2002, 25, 195-202. doi: 10.1080/014957302753384423
CrossRef Google Scholar
|
[45]
|
R. Quintanilla, A well-posed problem for the three-dual-phase-lag heat conduction, J. Thermal Stresses, 2009, 32, 1270-1278. doi: 10.1080/01495730903310599
CrossRef Google Scholar
|
[46]
|
R. Quintanilla and R. Racke, Stability in thermoelasticity of type Ⅲ, Discrete Contin. Dyn. Syst. B 3, 2003, 383-400.
Google Scholar
|
[47]
|
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, second edition, in: Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
Google Scholar
|
[48]
|
Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. Pure Appl. Anal. 4, 2005, 683-693.
Google Scholar
|