2019 Volume 9 Issue 5
Article Contents

Jing Shao, Boling Guo, Lingling Duan. ANALYTICAL STUDY OF THE TEO-DIMENSIONAL TIME-FRTACTIONAL NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1999-2022. doi: 10.11948/20190065
Citation: Jing Shao, Boling Guo, Lingling Duan. ANALYTICAL STUDY OF THE TEO-DIMENSIONAL TIME-FRTACTIONAL NAVIER-STOKES EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(5): 1999-2022. doi: 10.11948/20190065

ANALYTICAL STUDY OF THE TEO-DIMENSIONAL TIME-FRTACTIONAL NAVIER-STOKES EQUATIONS

  • Corresponding author: Email address: shaojing99500@163.com(J. Shao) 
  • Fund Project: Project supported by NNSF of China (Nos 11671227 and 11271225), NSF of Shandong (No ZR2018LA004), and Science and Technology Project of High Schools of Shandong (Nos J18KA220, J18KB107)
  • In this paper, the two-dimensional (2D) Holf-Cole transformation with mass conservation in the frame of conformable derivative is developed, and then by introducing some exact solutions that satisfy linear differential equations and using the symbolic computation method, four exact solutions of 2D-nonlinear Navier-Stokes equations (NSEs) with the conformable time-fractional derivative are established. Some physical properties of the exact solutions are described preliminarily. Our results are the first ones on analytical study for the 2D time-fractional NSEs.
    MSC: 76D05, 35B65
  • 加载中
  • [1] T. Abdeljawad, On conformable fractional calculus, Comput. Appl. Math., 2015, 279, 57-66. doi: 10.1016/j.cam.2014.10.016

    CrossRef Google Scholar

    [2] A. Atangana, D. Baleanu and A. Alsaedi, New properties of conformable derivative, Open Math., 2015, 13, 889-898.

    Google Scholar

    [3] Charles-Henri Bruneau and Sandra Tancogne Far field boundary conditions for incompressible flows computation, J. Appl. Anal. Comput., 2018, 8: 3, 690-709.

    Google Scholar

    [4] W. Chung, Fractional Newton mechanics with conformable fractional derivative, Comput. Appl. Math., 2015, 290, 150-158. doi: 10.1016/j.cam.2015.04.049

    CrossRef Google Scholar

    [5] K. Diethelm, The analysis of fractional differential equations, Springer, Berlin, 2010.

    Google Scholar

    [6] Y. He and W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, 2007, SIAM J. Numer. Anal., 45(2), 837-869.

    Google Scholar

    [7] R. Ingram, A new linearly extrapolated Crank-Nicolson time-stepping scheme for the Navier-Stokes equations, Math. Comp., 2013, 82(284), 1953-1973. doi: 10.1090/S0025-5718-2013-02678-6

    CrossRef Google Scholar

    [8] S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 2005, 43(4), 1572-1595. doi: 10.1137/S0036142903434862

    CrossRef Google Scholar

    [9] R. Khalil, M. Alhorani, A. Yousef and M. Sababheh, A new definition of fractional derivative, Comput. Appl. Math., 2014, 65-70.

    Google Scholar

    [10] H. C. Ku and D. Hatziavramidis, Solutions of the two-dimensional Navier-Stokes equations by Chebyshev expansion methods, Computer & Fluids, 1985, 13(1), 99-113.

    Google Scholar

    [11] L. Peng, A. Debbouche and Y. Zhou, Existence and approximations of solutions for time-fractional Navier-Stokes equations, Math. Meth. Appl. Sci., 2018, 4, 1-12.

    Google Scholar

    [12] I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

    Google Scholar

    [13] G. Profilo, G. Soliani and C. Tebaldi, Some exact solutions of the two-dimensional Navier-Stokes equations, Int. J. Engng Sci., 1998, 36(4), 459-471. doi: 10.1016/S0020-7225(97)00065-7

    CrossRef Google Scholar

    [14] A. A. Ragab, K. M. Hemida, M. S. Mohamed and M. A. Abd El Salam, Solution of time fractional Navier-Stokes equation by using Homotopy analysis method, Gen. Math. Notes, 2012, 13(2), 13-21.

    Google Scholar

    [15] T. Saitoh, A numerical method for two-dimensional Navier-Stokes equation by multi-point finite differences, International J. Numer. Meth. Engin., 1977, 11, 1439-1454. doi: 10.1002/nme.1620110908

    CrossRef Google Scholar

    [16] L. Shan and Y. Hou, A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations, Appl. Math. Comput., 2009, 215(1), 85-99.

    Google Scholar

    [17] A. Shirikyan, Analyticity of solutions for randomly forced two-dimensional Navier-Stokes equations, Russian Math. Surveys, 2002, 54(4), 785-799.

    Google Scholar

    [18] R. M. Terrill, An exact solution for flow in a porous pipe, Appl. Math. Phys., 1982, 33(4), 547-552.

    Google Scholar

    [19] B. Tian and Y. Gao, Spherical Kadomtsev-Petviashvili equation and nebulons for dustion-acoustic waves with symbolic computation, Physics Letters A, 2005, 340, 243-250. doi: 10.1016/j.physleta.2005.03.035

    CrossRef Google Scholar

    [20] B. Tian and Y. Gao, On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation, Physics Letters A, 2005, 340, 449-455. doi: 10.1016/j.physleta.2005.03.082

    CrossRef Google Scholar

    [21] D. J. Torres and E. A. Coutsias, Pseudospectral solution of the two-dimensional Navier-Stokes equations in a disk, SIAM J. Sci. Comput., 1999, 21(1), 378-403. doi: 10.1137/S1064827597330157

    CrossRef Google Scholar

    [22] S. Tsangaris, D. Kondaxakis and N. W. Vlachakis, Exact solution of the Navier-Stokes equations for the pulsating Dean flow in a channel with porous walls, International J. Engin. Sci., 2006, 44, 1498-1509. doi: 10.1016/j.ijengsci.2006.08.010

    CrossRef Google Scholar

    [23] C. Wu, Z. Ji, Y. Zhang, J. Hao and X. Jin, Some new exact solutions for the two-dimensional Navier-Stokes equations, Physics Letters A, 2007, 371, 438-452. doi: 10.1016/j.physleta.2007.06.047

    CrossRef Google Scholar

    [24] C. Y. Wang, Flow due to a stretching boundary with partial slip-an exact solution of the Navier-Stokes equations, Chemical Engineering Science, 2002, 57, 3745-3747. doi: 10.1016/S0009-2509(02)00267-1

    CrossRef Google Scholar

    [25] Z. Zhang, X. Ouyang and X. Yang, Refined a priori estimates for the axisymmetric Navier-Stokes equations, J. Appl. Anal. Comput., 2017, 7, 554-558.

    Google Scholar

    [26] Yuqing Zhang, Yuan Li and Rong An, Two-level iteration penalty and variational multiscale method for steady incompressible flows, J. Appl. Anal. Comput., 2016, 6, 607-627.

    Google Scholar

    [27] Z. Zhao, Exact solutions of a class of second-order nonlocal boundary value problems and applications, Appl. Math. Comput., 2009, 215(5), 1926-1936.

    Google Scholar

    [28] D. Zhao and M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 2017. https://DOI10.1007/s10092-017-0213-8.

    Google Scholar

    [29] Y. Zhou and L. Peng, Weak solutions of the time fractional Navier-Stokes equations and optimal control, Comput. Math. Appl., 2017, 73(6), 1016-1027. doi: 10.1016/j.camwa.2016.07.007

    CrossRef Google Scholar

    [30] G. Zou, Y. Zhou, B. Ahmad and A. Alsaedi, Finite difference/element method for time-fractional Navier-Stokes equations, Appl. Comput. Math., 2018, arXiv: 1802.09779v1[math. NA].

    Google Scholar

Figures(11)

Article Metrics

Article views(1766) PDF downloads(496) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint