[1]
|
T. P. Andrade and A. Pastor, Orbital stability of periodic traveling-wave solutions for the regularized Schamel equation, Phys. D, 2016,317, 43-58. doi: 10.1016/j.physd.2015.12.002
CrossRef Google Scholar
|
[2]
|
T. P. Andrade, F. Cristófani and F. Natali, Orbital stability of periodic traveling wave solutions for the Kawahara equation, J. Math. Phys., 2017, 58(5), 051504. doi: 10.1063/1.4980016
CrossRef Google Scholar
|
[3]
|
T. P. Andrade and A. Pastor, Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications, J. Math. Anal. Appl., 2019,475(2), 1242-1275. doi: 10.1016/j.jmaa.2019.03.011
CrossRef Google Scholar
|
[4]
|
J. Angulo, Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling Waves Solutions, Mathematical Surveys and Monographs Series (SURV vol 156), Providence, RI: American Mathematical Society, 2009.
Google Scholar
|
[5]
|
D. J. Benny, A general theory for interactions between short and long waves, Stud. Appl. Math., 1977, 56, 81-94. doi: 10.1002/sapm197756181
CrossRef Google Scholar
|
[6]
|
T. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond. A., 1972,338,153-183.
Google Scholar
|
[7]
|
J. Bona, On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A., 1975,344,363-374. doi: 10.1098/rspa.1975.0106
CrossRef Google Scholar
|
[8]
|
P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971.
Google Scholar
|
[9]
|
E. Jr. Cardoso, F. Natali and A. Pastor, Well-posedness and orbital stability of periodic traveling waves for Schamel's equation, Z. Anal. Anwend., 2018, 37(2), 221-250. doi: 10.4171/ZAA/1611
CrossRef Google Scholar
|
[10]
|
V. D. Djordjevic and L. G. Redekopp, On two dimensional packets of capillary gravity waves, J. Fluid. Mech., 1977, 79,703-714. doi: 10.1017/S0022112077000408
CrossRef Google Scholar
|
[11]
|
Z. H. Gan and Z. Yin, Well-posedness of the Cauchy problem for a coupled system of generalized long-short wave equations, (Chinese) Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 2001, 24(2), 119-123.
Google Scholar
|
[12]
|
H. J. Grimshaw, The modulation of an internal gravity-wave packet, and the resonance with the mean motion, Stud. Appl. Math., 1977, 56,241-266. doi: 10.1002/sapm1977563241
CrossRef Google Scholar
|
[13]
|
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 1987, 74,160-197. doi: 10.1016/0022-1236(87)90044-9
CrossRef Google Scholar
|
[14]
|
M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry â…¡, J. Funct. Anal., 1990, 94,308-348. doi: 10.1016/0022-1236(90)90016-E
CrossRef Google Scholar
|
[15]
|
B. L. Guo and C. X. Miao, Well-posedness of Cauchy problem for coupled system of long-short wave equations, J. Partial Diff. Eqns., 1998, 11(1), 83-96.
Google Scholar
|
[16]
|
B. L. Guo and L. Chen, Orbital stability of solitary waves of the long wave-short wave resonance equations, Commun. Nonlinear Sci. Numer. Simul., 1996, 1(3), 37-42. doi: 10.1016/S1007-5704(96)90009-X
CrossRef Google Scholar
|
[17]
|
B. L. Guo and L. Chen, Orbital Stability of Solitary Waves of the Long Wave-Short Wave Resonance Equations, Math. Meth. Appl. Sci., 1998, 21,883-894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B
CrossRef Google Scholar
|
[18]
|
E. L. Ince, The periodic Lamé functions, Proc. Roy. Soc. Edinburgh., 1940, 60, 47-63. doi: 10.1017/S0370164600020058
CrossRef Google Scholar
|
[19]
|
P. Laurencot, On a nonlinear Schrödinger equation arising in the theory of water waves, Nonlinear Anal. TMA., 1995, 24(4), 509-527. doi: 10.1016/0362-546X(94)00106-R
CrossRef Google Scholar
|
[20]
|
Y. C. Ma, The complete solution of the long wave-short wave resonance equations, Stud. Appl. Math., 1978, 59,201-221. doi: 10.1002/sapm1978593201
CrossRef Google Scholar
|
[21]
|
W. Magnus and S. Winkler, Hill's Equation, Tracts Pure Appl Math, Wiley, New York, 1976.
Google Scholar
|
[22]
|
D. R. Nicholson and M. V. Goldman, Damped nonlinear Schroedinger equation, Phys. Fluids, 1976, 19, 1621-1625. doi: 10.1063/1.861368
CrossRef Google Scholar
|
[23]
|
J. A. Pava and J. F. B. Montenegro, Orbital stability of solitary wave solutions for an interaction equation of short and long dispersive waves, J. Differential Equations, 2001,174,181-199. doi: 10.1006/jdeq.2000.3923
CrossRef Google Scholar
|
[24]
|
M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlinear Anal. TMA., 1994, 22(2), 151-171.
Google Scholar
|
[25]
|
O. Trichtchenko, B. Deconinck and R. Kollár, Stability of periodic traveling wave solutions to the Kawahara equation, SIAM J. Appl. Dyn. Syst., 2018, 17(4), 2761-2783. doi: 10.1137/18M1196121
CrossRef Google Scholar
|
[26]
|
L. Vega, The Schrödinger equation: pointwise convergence to the initial data, Proc. Am. Math. Soc., 1988,102,874-878.
Google Scholar
|
[27]
|
M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, Commun. Pure. Appl. Math., 1986, 39, 51-68. doi: 10.1002/cpa.3160390103
CrossRef Google Scholar
|
[28]
|
M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equation, SIAM. J. Math. Anal., 1985, 16,472-490. doi: 10.1137/0516034
CrossRef Google Scholar
|
[29]
|
X. X. Zheng, Y. D. Shang and X.M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 2017, 37B(4), 1-21.
Google Scholar
|