2019 Volume 9 Issue 6
Article Contents

Xiaoxiao Zheng, Jie Xin, Xiaoming Peng. ORBITAL STABILITY OF PERIODIC TRAVELING WAVE SOLUTIONS TO THE GENERALIZED LONG-SHORT WAVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2389-2408. doi: 10.11948/20190118
Citation: Xiaoxiao Zheng, Jie Xin, Xiaoming Peng. ORBITAL STABILITY OF PERIODIC TRAVELING WAVE SOLUTIONS TO THE GENERALIZED LONG-SHORT WAVE EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(6): 2389-2408. doi: 10.11948/20190118

ORBITAL STABILITY OF PERIODIC TRAVELING WAVE SOLUTIONS TO THE GENERALIZED LONG-SHORT WAVE EQUATIONS

  • Corresponding author: Email address:xiaoxiaozheng87@163.com(X. Zheng) 
  • Fund Project: This work is supported by the Natural Science Foundation of Shandong Province (No. ZR2018BA016), National Natural Science Foundation of China(No. 11371183) and Science and technology project of Qufu Normal University (xkj201607)
  • This paper investigates the orbital stability of periodic traveling wave solutions to the generalized Long-Short wave equations $ \left\{ \begin{array}{l} \!\!\!i\varepsilon_{\!t}\!+\!\varepsilon_{\!xx}\!\! = \!\!n\varepsilon\!\!+\!\! \alpha|\varepsilon|^{2}\!\varepsilon,\\ \!\!n_{t}\!\! = \!\!(|\varepsilon|^{2})_{x}, x\!\in\! R. \end{array} \right. $ Firstly, we show that there exist a smooth curve of positive traveling wave solutions of dnoidal type with a fixed fundamental period $ L $ for the generalized Long-Short wave equations. Then, combining the classical method proposed by Benjamin, Bona et al., and detailed spectral analysis given by using Lamé equation and Floquet theory, we show that the dnoidal type periodic wave solution is orbitally stable by perturbations with period $ L $. As the modulus of the Jacobian elliptic function $ k\rightarrow 1 $, we obtain the orbital stability results of solitary wave solution with zero asymptotic value for the generalized Long-Short equations. In particular, as $ \alpha = 0 $, we can also obtain the orbital stability results of periodic wave solutions and solitary wave solutions for the long-short wave resonance equations. The results in the present paper improve and extend the previous stability results of long-shore wave equations and its extension equations.
    MSC: 35Q55, 35B35
  • 加载中
  • [1] T. P. Andrade and A. Pastor, Orbital stability of periodic traveling-wave solutions for the regularized Schamel equation, Phys. D, 2016,317, 43-58. doi: 10.1016/j.physd.2015.12.002

    CrossRef Google Scholar

    [2] T. P. Andrade, F. Cristófani and F. Natali, Orbital stability of periodic traveling wave solutions for the Kawahara equation, J. Math. Phys., 2017, 58(5), 051504. doi: 10.1063/1.4980016

    CrossRef Google Scholar

    [3] T. P. Andrade and A. Pastor, Orbital stability of one-parameter periodic traveling waves for dispersive equations and applications, J. Math. Anal. Appl., 2019,475(2), 1242-1275. doi: 10.1016/j.jmaa.2019.03.011

    CrossRef Google Scholar

    [4] J. Angulo, Nonlinear Dispersive Evolution Equations: Existence and Stability of Solitary and Periodic Traveling Waves Solutions, Mathematical Surveys and Monographs Series (SURV vol 156), Providence, RI: American Mathematical Society, 2009.

    Google Scholar

    [5] D. J. Benny, A general theory for interactions between short and long waves, Stud. Appl. Math., 1977, 56, 81-94. doi: 10.1002/sapm197756181

    CrossRef Google Scholar

    [6] T. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond. A., 1972,338,153-183.

    Google Scholar

    [7] J. Bona, On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A., 1975,344,363-374. doi: 10.1098/rspa.1975.0106

    CrossRef Google Scholar

    [8] P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, Springer, New York, 1971.

    Google Scholar

    [9] E. Jr. Cardoso, F. Natali and A. Pastor, Well-posedness and orbital stability of periodic traveling waves for Schamel's equation, Z. Anal. Anwend., 2018, 37(2), 221-250. doi: 10.4171/ZAA/1611

    CrossRef Google Scholar

    [10] V. D. Djordjevic and L. G. Redekopp, On two dimensional packets of capillary gravity waves, J. Fluid. Mech., 1977, 79,703-714. doi: 10.1017/S0022112077000408

    CrossRef Google Scholar

    [11] Z. H. Gan and Z. Yin, Well-posedness of the Cauchy problem for a coupled system of generalized long-short wave equations, (Chinese) Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 2001, 24(2), 119-123.

    Google Scholar

    [12] H. J. Grimshaw, The modulation of an internal gravity-wave packet, and the resonance with the mean motion, Stud. Appl. Math., 1977, 56,241-266. doi: 10.1002/sapm1977563241

    CrossRef Google Scholar

    [13] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., 1987, 74,160-197. doi: 10.1016/0022-1236(87)90044-9

    CrossRef Google Scholar

    [14] M. Grillakis, J. Shatah and W. Strauss, Stability theory of solitary waves in the presence of symmetry â…¡, J. Funct. Anal., 1990, 94,308-348. doi: 10.1016/0022-1236(90)90016-E

    CrossRef Google Scholar

    [15] B. L. Guo and C. X. Miao, Well-posedness of Cauchy problem for coupled system of long-short wave equations, J. Partial Diff. Eqns., 1998, 11(1), 83-96.

    Google Scholar

    [16] B. L. Guo and L. Chen, Orbital stability of solitary waves of the long wave-short wave resonance equations, Commun. Nonlinear Sci. Numer. Simul., 1996, 1(3), 37-42. doi: 10.1016/S1007-5704(96)90009-X

    CrossRef Google Scholar

    [17] B. L. Guo and L. Chen, Orbital Stability of Solitary Waves of the Long Wave-Short Wave Resonance Equations, Math. Meth. Appl. Sci., 1998, 21,883-894. doi: 10.1002/(SICI)1099-1476(19980710)21:10<883::AID-MMA974>3.0.CO;2-B

    CrossRef Google Scholar

    [18] E. L. Ince, The periodic Lamé functions, Proc. Roy. Soc. Edinburgh., 1940, 60, 47-63. doi: 10.1017/S0370164600020058

    CrossRef Google Scholar

    [19] P. Laurencot, On a nonlinear Schrödinger equation arising in the theory of water waves, Nonlinear Anal. TMA., 1995, 24(4), 509-527. doi: 10.1016/0362-546X(94)00106-R

    CrossRef Google Scholar

    [20] Y. C. Ma, The complete solution of the long wave-short wave resonance equations, Stud. Appl. Math., 1978, 59,201-221. doi: 10.1002/sapm1978593201

    CrossRef Google Scholar

    [21] W. Magnus and S. Winkler, Hill's Equation, Tracts Pure Appl Math, Wiley, New York, 1976.

    Google Scholar

    [22] D. R. Nicholson and M. V. Goldman, Damped nonlinear Schroedinger equation, Phys. Fluids, 1976, 19, 1621-1625. doi: 10.1063/1.861368

    CrossRef Google Scholar

    [23] J. A. Pava and J. F. B. Montenegro, Orbital stability of solitary wave solutions for an interaction equation of short and long dispersive waves, J. Differential Equations, 2001,174,181-199. doi: 10.1006/jdeq.2000.3923

    CrossRef Google Scholar

    [24] M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for the long wave-short wave resonance equations, Nonlinear Anal. TMA., 1994, 22(2), 151-171.

    Google Scholar

    [25] O. Trichtchenko, B. Deconinck and R. Kollár, Stability of periodic traveling wave solutions to the Kawahara equation, SIAM J. Appl. Dyn. Syst., 2018, 17(4), 2761-2783. doi: 10.1137/18M1196121

    CrossRef Google Scholar

    [26] L. Vega, The Schrödinger equation: pointwise convergence to the initial data, Proc. Am. Math. Soc., 1988,102,874-878.

    Google Scholar

    [27] M. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations, Commun. Pure. Appl. Math., 1986, 39, 51-68. doi: 10.1002/cpa.3160390103

    CrossRef Google Scholar

    [28] M. Weinstein, Modulation stability of ground states of nonlinear Schrödinger equation, SIAM. J. Math. Anal., 1985, 16,472-490. doi: 10.1137/0516034

    CrossRef Google Scholar

    [29] X. X. Zheng, Y. D. Shang and X.M. Peng, Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations, Acta Math. Sci., 2017, 37B(4), 1-21.

    Google Scholar

Article Metrics

Article views(2723) PDF downloads(526) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint