2020 Volume 10 Issue 4
Article Contents

Parvaiz Ahmad Naik, Jian Zu, Mohammad Ghoreishi. STABILITY ANALYSIS AND APPROXIMATE SOLUTION OF SIR EPIDEMIC MODEL WITH CROWLEY-MARTIN TYPE FUNCTIONAL RESPONSE AND HOLLING TYPE-Ⅱ TREATMENT RATE BY USING HOMOTOPY ANALYSIS METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1482-1515. doi: 10.11948/20190239
Citation: Parvaiz Ahmad Naik, Jian Zu, Mohammad Ghoreishi. STABILITY ANALYSIS AND APPROXIMATE SOLUTION OF SIR EPIDEMIC MODEL WITH CROWLEY-MARTIN TYPE FUNCTIONAL RESPONSE AND HOLLING TYPE-Ⅱ TREATMENT RATE BY USING HOMOTOPY ANALYSIS METHOD[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1482-1515. doi: 10.11948/20190239

STABILITY ANALYSIS AND APPROXIMATE SOLUTION OF SIR EPIDEMIC MODEL WITH CROWLEY-MARTIN TYPE FUNCTIONAL RESPONSE AND HOLLING TYPE-Ⅱ TREATMENT RATE BY USING HOMOTOPY ANALYSIS METHOD

  • In this paper, SIR epidemic model with Crowley-Martin type functional response and Holling type-Ⅱ treatment rate is investigated. The analysis of the model shows that it has two equilibria, namely disease-free and endemic. We investigate the existence and stability results of equilibria by using LaSalle's invariant principle and Lyapunov function. $\mathfrak{R}_{0}$ has been found to ensure the extinction or persistence of the infection. Furthermore, homotopy analysis method is employed to obtain the series solution of the proposed model. By using the homotopy solutions, firstly, several $\hbar$-curves are plotted to demonstrate the regions of convergence, then the residual and square residual errors are obtained for different values of these regions. Secondly, the numerical solutions are presented for various iterations and the absolute error functions are applied to show the accuracy of the applied homotopy analysis method.
    MSC: 34D20, 37M05, 39A10, 65P20, 92B05
  • 加载中
  • [1] M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Mathematical Biosciences, 2004, 189(1), 75–96. doi: 10.1016/j.mbs.2004.01.003

    CrossRef Google Scholar

    [2] J. F. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 1968, 10(6), 707–723. doi: 10.1002/bit.260100602

    CrossRef Google Scholar

    [3] R. M. Anderson and R. N. May, Population biology of infectious disease: part-1. Nature, 1979, 280, 361–367. doi: 10.1038/280361a0

    CrossRef Google Scholar

    [4] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 2004, 1, 361–404. doi: 10.3934/mbe.2004.1.361

    CrossRef Google Scholar

    [5] R. V. Culshaw and S. Ruan, A delay-differential equation model of HIV infection of CD4+ T-cells, Mathematical Bioscience, 2000, 165, 27–39. doi: 10.1016/S0025-5564(00)00006-7

    CrossRef Google Scholar

    [6] P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, Journal of the North American Benthological Society, 1989, 8(3), 211–221. doi: 10.2307/1467324

    CrossRef Google Scholar

    [7] P. Dubey, U. S. Dubey and B. Dubey, Modeling the role of acquired immune response and antiretroviral therapy in the dynamics of HIV infection, Mathematics and Computers in Simulation, 2018, 144, 120–137. doi: 10.1016/j.matcom.2017.07.006

    CrossRef Google Scholar

    [8] B. Dubey, A. Patra, P. K. Srivastava and U. S. Dubey, Modeling and analysis of an SEIR model with different types of nonlinear treatment rates, Journal of Biological Systems, 2013, 21(3), 1–20.

    Google Scholar

    [9] V. P. Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 2002, 180 (2), 29-48.

    Google Scholar

    [10] O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, Journal of Royal Society Interface, 2010, 7(47), 873–885. doi: 10.1098/rsif.2009.0386

    CrossRef Google Scholar

    [11] A. Das, Analytical solution to the flow between two coaxial rotating disks using HAM, Procedia Engineering, 2015, 127, 377–382. doi: 10.1016/j.proeng.2015.11.384

    CrossRef Google Scholar

    [12] B. Dubey, P. Dubey and U. S. Dubey, Dynamics of an SIR model with nonlinear incidence and treatment rate, Applications and Applied Mathematics: An International Journal, 2015, 10(2), 718–737.

    Google Scholar

    [13] J. Duarte, C. Januario, N. Martins, C. C. Ramos, C. Rodrigues and J. Sardanyes, Optimal homotopy analysis of a chaotic HIV-1 model incorporating AIDS-related cancer cells, Numerical Algorithms, 2018, 77, 261–288. doi: 10.1007/s11075-017-0314-0

    CrossRef Google Scholar

    [14] W. R. Derrick and V. P. Driessche, A disease transmission model in a non-constant population, Journal of Mathematical Biology, 1993, 31(5), 495–512. doi: 10.1007/BF00173889

    CrossRef Google Scholar

    [15] D. J. D. Earn, J. Dushoff and S. A. Levin, Ecology and evolution of the flu, Trends in Ecology and Evolution, 2002, 17(7), 334–340. doi: 10.1016/S0169-5347(02)02502-8

    CrossRef Google Scholar

    [16] M. Ghoreishi, A. I. B. M. Ismail and A. Rashid, Solution of a strongly coupled reaction-diffusion system by the homotopy analysis method, Bulletin of the Belgian Mathematical Society-Simon Stevin, 2011, 18(3), 471–481. doi: 10.36045/bbms/1313604451

    CrossRef Google Scholar

    [17] M. Ghoreishi, A. I. B. M. Ismail and A. K. Alomari, A. S. Bataineh, The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age-structured population models, Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3), 1163–1177. doi: 10.1016/j.cnsns.2011.08.003

    CrossRef Google Scholar

    [18] S. Geethamalini and S. Balamuralitharan, Semi-analytical solutions by homotopy analysis method for EIAV infection with stability analysis, Advances in Difference Equations 2018, 356, 1–14.

    Google Scholar

    [19] M. Ghoreishi, A. I. B. M. Ismail and A. Rashid, On the convergence of the homotopy analysis method for inner-resonance of tangent nonlinear cushioning packaging system with critical components, Abstract and Applied Analysis, 2013, Article ID 424510, 1–10.

    Google Scholar

    [20] M. Ghoreishi, A. I. B. M. Ismail and A. K. Alomari, Application of the homotopy analysis method for solving a model for HIV infection of CD4+ T-cells, Mathematical and Computer Modelling, 2011, 54, 3007–3015. doi: 10.1016/j.mcm.2011.07.029

    CrossRef Google Scholar

    [21] H. W. Hethcote and V. P. Driessche, Some epidemiological models with non-linear incidence. Journal of Mathematical Biology, 1991, 29(3), 271–287. doi: 10.1007/BF00160539

    CrossRef Google Scholar

    [22] H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 2000, 42(4), 599–653. doi: 10.1137/S0036144500371907

    CrossRef Google Scholar

    [23] Y. D. Haiping, A fractional-order differential equation model of HIV infection of CD4+ T-cells, Mathematical and Computer Modelling, 2009, 50, 386–392. doi: 10.1016/j.mcm.2009.04.019

    CrossRef Google Scholar

    [24] W. O. Kermack and A.G. Mckendrick, A contribution to the mathematical theory of epidemic, Proceedings of the Royal Society London A, 1927, 115(772), 700–721. doi: 10.1098/rspa.1927.0118

    CrossRef Google Scholar

    [25] L. Liancheng and Y. Li, Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Mathematical Bioscience, 2006, 200, 44–57. doi: 10.1016/j.mbs.2005.12.026

    CrossRef Google Scholar

    [26] W. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology, 1986, 23(2), 187–-204. doi: 10.1007/BF00276956

    CrossRef Google Scholar

    [27] S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, CRC Press, Chapman and Hall, Boca Raton, 2003.

    Google Scholar

    [28] S. Liao, Comparison between the homotopy analysis method and homotopy perturbation method, Applied Mathematics and Computation, 2005, 169, 1186–1194. doi: 10.1016/j.amc.2004.10.058

    CrossRef Google Scholar

    [29] J. P. LaSalle, The stability of dynamical systems, CBMS-NSF Regional Conference Series in Applied Math, SIAM, Philadelphia 1976, 25.

    Google Scholar

    [30] Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical modelling and research of epidemic dynamical systems, Science press, Beijing, 2004, 80.

    Google Scholar

    [31] S. M. Moghadas and M. E. Alexander, Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate, Mathematical Medicine and Biology, 2006, 23(3), 231–254.

    Google Scholar

    [32] S. Noeiaghdam, M. Suleman and H. S. Budak, Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method, Mathematical Sciences, 2018, 12(3), 211–222. doi: 10.1007/s40096-018-0261-5

    CrossRef Google Scholar

    [33] P. A. Naik, J. Zu and M. Ghoreishi, Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method, Chaos Solitons Fractals, 2020, 131, 109500. doi: 10.1016/j.chaos.2019.109500

    CrossRef Google Scholar

    [34] P. A. Naik, J. Zu and K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 2020, 545, 123816. doi: 10.1016/j.physa.2019.123816

    CrossRef Google Scholar

    [35] F. Ozpınar, Applying discrete homotopy analysis method for solving fractional partial differential equations, Entropy, 2018, 20(5), 332. doi: 10.3390/e20050332

    CrossRef Google Scholar

    [36] Z. Qiu and Z. Feng, Transmission dynamics of an influenza model with vaccination and antiviral treatment, Bulletin of Mathematical Biology, 2010, 72(1), 1–33.

    Google Scholar

    [37] S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics, 2001, 61 (4), 1445–1472. doi: 10.1137/S0036139999361896

    CrossRef Google Scholar

    [38] P. Rohani, M. J. Keeling and B. T. Grenfell, The interplay between determinism and stochasticity in childhood diseases, The American Naturalist, 2002, 159(5), 469–481. doi: 10.1086/339467

    CrossRef Google Scholar

    [39] M. M. Rashidi, S. A. M. Pour and S. Abbasbandy, Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 1874–1889. doi: 10.1016/j.cnsns.2010.08.016

    CrossRef Google Scholar

    [40] X. Shi, X. Zhou and X. Song, Analysis of a stage-structured predator-prey model with Crowley Martin function, Journal of Applied Mathematics and Computing, 2011, 36(1–2), 459–472. doi: 10.1007/s12190-010-0413-8

    CrossRef Google Scholar

    [41] Z. Shuai and V. P. Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM Journal on Applied Mathematics, 2013, 73(4), 1513–1532. doi: 10.1137/120876642

    CrossRef Google Scholar

    [42] S. Sastry, Analysis, Stability and Control, Springer-Verlag New York, 1999.

    Google Scholar

    [43] M. S. Semary and H. N. Hassan, The homotopy analysis method for q-difference equations, Ain Shams University Ain Shams Engineering Journal, 2018, 9, 415–421. doi: 10.1016/j.asej.2016.02.005

    CrossRef Google Scholar

    [44] S. Sarwardi, M. Haque and P. K. Mandal, Persistence and global stability of Bazykin predator-prey model with Beddington-DeAngelis response function, Communications in Nonlinear Science and Numerical Simulation, 2014, 19(1), 189–209. doi: 10.1016/j.cnsns.2013.05.029

    CrossRef Google Scholar

    [45] J. Sardanyes, C. Rodrigues, C. Januario, N. Martins, G. Gil-Gomez and J. Duarte, Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach, Applied Mathematics and Computation, 2015, 252, 484–495. doi: 10.1016/j.amc.2014.12.005

    CrossRef Google Scholar

    [46] C. Sun and W. Yang, Global results for an SIRS model with vaccination and isolation, Nonlinear Analysis: Real World Applications, 2010, 11(5), 4223–4237. doi: 10.1016/j.nonrwa.2010.05.009

    CrossRef Google Scholar

    [47] W. Wang, G. Mulone, F. Salemi and V. Salone, Permanence and stability of a stage-structured predator-prey model, Journal of Mathematical Analysis and Applications, 2001, 262(2), 499–528. doi: 10.1006/jmaa.2001.7543

    CrossRef Google Scholar

    [48] W. Wang and S. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, Journal of Mathematical Analysis and Applications, 2004, 291(2), 775–793. doi: 10.1016/j.jmaa.2003.11.043

    CrossRef Google Scholar

    [49] W. Wang, Backward bifurcation of an epidemic model with treatment, Mathematical Biosciences, 2006, 201(2), 58–71.

    Google Scholar

    [50] J. Yu and J. Yu, Homotopy analysis method for a prey-predator system with holling iv functional response, Applied Mechanics and Materials, 2014, 687, 1286–1291.

    Google Scholar

    [51] K. Yabushita, M. Yamashita and K. Tsuboi, An analytical solution of projectile motion with the quadratic resistance law using the homotopy analysis method, Journal of Physics A: Mathematical and Theoretical, 2007, 40, 8403–8416. doi: 10.1088/1751-8113/40/29/015

    CrossRef Google Scholar

    [52] L. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Analysis: Real World Applications, 2012, 13(1), 312–324. doi: 10.1016/j.nonrwa.2011.07.036

    CrossRef Google Scholar

    [53] H. Zhu, H. Shu and M. Ding, Numerical solution of partial differential equations by discrete homotopy analysis method, Applied Mathematics and Computation, 2010, 216(12), 3592–3605. doi: 10.1016/j.amc.2010.05.005

    CrossRef Google Scholar

Figures(5)  /  Tables(4)

Article Metrics

Article views(4082) PDF downloads(546) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint