2020 Volume 10 Issue 5
Article Contents

Chi Phan, Yuncheng You. EXPONENTIAL ATTRACTOR FOR HINDMARSH-ROSE EQUATIONS IN NEURODYNAMICS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2036-2057. doi: 10.11948/20190321
Citation: Chi Phan, Yuncheng You. EXPONENTIAL ATTRACTOR FOR HINDMARSH-ROSE EQUATIONS IN NEURODYNAMICS[J]. Journal of Applied Analysis & Computation, 2020, 10(5): 2036-2057. doi: 10.11948/20190321

EXPONENTIAL ATTRACTOR FOR HINDMARSH-ROSE EQUATIONS IN NEURODYNAMICS

  • The existence of exponential attractor for the diffusive Hindmarsh-Rose equations on a three-dimensional bounded domain in the study of neurodynamics is proved through uniform estimates and a new theorem on the squeezing property of the abstract reaction-diffusion equation established in this paper. This result on the exponential attractor infers that the global attractor whose existence has been proved in [22] for the diffusive Hindmarsh-Rose semiflow has a finite fractal dimension.
  • 加载中
  • [1] R. Bertram, M. J. Butte, T. Kiemel and A. Sherman, Topologica and phenomenological classification of bursting oscillations, Bulletin of Mathematical Biology, 1995, 57, 413-439. doi: 10.1016/S0092-8240(05)81776-8

    CrossRef Google Scholar

    [2] R.J. Buters, J. Rinzel and J.C. Smith, Models respiratory rhythm generation in the pre-Bötzinger complex, I. Bursting pacemaker neurons, J. Neurophysiology, 1999, 81, 382-397. doi: 10.1152/jn.1999.82.1.382

    CrossRef Google Scholar

    [3] A.N. Carvalho, J.A. Langa and J.C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Springer, New York, 2013.

    Google Scholar

    [4] T.R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophysiology Journal, 1983, 42, 181-189. doi: 10.1016/S0006-3495(83)84384-7

    CrossRef Google Scholar

    [5] V.V. Chepyzhov and M.I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society, Providence, RI, 2002.

    Google Scholar

    [6] S. Coombes, Waves, bumps, and patterns in neural field theories, Biological Cybernetics, 2005, 93, 91-108. doi: 10.1007/s00422-005-0574-y

    CrossRef Google Scholar

    [7] L.N. Cornelisse, W.J. Scheenen, W.J. Koopman, E.W. Roubos and S.C. Gielen, Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus Laevis, Neural Computations, 2000, 13, 113-137.

    Google Scholar

    [8] M. Dhamala, V. K. Jirsa and M. Ding, Transitions to synchrony in coupled bursting neurons, Physical Review Letters, 2004, 92, 028101. doi: 10.1103/PhysRevLett.92.028101

    CrossRef Google Scholar

    [9] A. Eden, C. Foias, B. Nicolaenco and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley & Sons, New York, 1994.

    Google Scholar

    [10] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C.R. Acad. Sci. Paris, Sér. I Math., 2000, 330, 713-718. doi: 10.1016/S0764-4442(00)00259-7

    CrossRef Google Scholar

    [11] M. Efendiev, Y. Yamamoto and A. Yagi, Exponential attractors for non-autonomous dissipative systems, J. Math. Soc. Japan, 2011, 63, 647-673. doi: 10.2969/jmsj/06320647

    CrossRef Google Scholar

    [12] G. B. Ementrout and D. H. Terman, Mathematical Foundations of Neurosciences, Springer, New York, 2010.

    Google Scholar

    [13] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1961, 1, 445-466. doi: 10.1016/S0006-3495(61)86902-6

    CrossRef Google Scholar

    [14] J.L. Hindmarsh and R.M. Rose, A model of the nerve impulse using two first-order differential equations, Nature, 1982, 206, 162-164.

    Google Scholar

    [15] J.L. Hindmarsh and R.M. Rose, A model of neuronal bursting using three coupled first-order differential equations, Proceedings of the Royal Society London, Series B: Biological Sciences, 1984, 221, 87-102. doi: 10.1098/rspb.1984.0024

    CrossRef Google Scholar

    [16] A. Hodgkin and A. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiology, Series B, 1952, 117, 500-544.

    Google Scholar

    [17] G. Innocenti and R. Genesio, On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron, Chaos, 2009, 19, 023124. doi: 10.1063/1.3156650

    CrossRef Google Scholar

    [18] E.M. Izhikecich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, MIT Press, Cambridge, Massachusetts, 2007.

    Google Scholar

    [19] P.E. Kloeden and J.A. Langa, Flattening, squeezing and the existence of random attractors, Proc. Royal Society London, Series A, 2007, 463, 163-181. doi: 10.1098/rspa.2006.1753

    CrossRef Google Scholar

    [20] S. Ma, Z. Feng and Q. Lu, Dynamics and double Hopf bifurcations of the Rose-Hindmarsh model with time delay, International Journal of Bifurcation and Chaos, 2009, 19, 3733-3751. doi: 10.1142/S0218127409025080

    CrossRef Google Scholar

    [21] A.J. Milani and N.J. Koksch, An Introduction to Semiflows, Chapman & Hall/CRC Press, Boca Raton, 2005.

    Google Scholar

    [22] C. Phan, Y. You and J. Su, Global attractors for Hindmarsh-Rose equations in neurodynamics, to appear in Journal of Nonlinear Modeling and Analysis, 2(4), 2020.

    Google Scholar

    [23] J. Rinzel, A formal classification of bursting mechanism in excitable systems, Proceedings of International Congress of Mathematics, 1987, 1, 1578-1593. doi: 10.1007/978-3-642-93360-8_26

    CrossRef Google Scholar

    [24] J.C. Robinson, Infinite Dimensional Dynamical Systems, Cambridge University Press, Cambridge, UK, 2001.

    Google Scholar

    [25] J. Rubin, Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters, Physics Review E, 2006, 74, 021917. doi: 10.1103/PhysRevE.74.021917

    CrossRef Google Scholar

    [26] G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002.

    Google Scholar

    [27] A. Shapiro, R. Curtu, J. Rinzel and N. Rubin, Dynamical characteristics common to neuronal competition models, J. Neurophysiology, 2007, 97, 462-473. doi: 10.1152/jn.00604.2006

    CrossRef Google Scholar

    [28] A. Sherman and J. Rinzel, Rhythmogenetic effects of weak electrotonic coupling in neuronal models, Proceedings of National Academy of Sciences, 1992, 89, 2471-2474. doi: 10.1073/pnas.89.6.2471

    CrossRef Google Scholar

    [29] J. Su, H. Perez-Gonzalez and M. He, Regular bursting emerging from coupled chaotic neurons, Discrete and Continuous Dynamical Systems, Supplement, 2007, 946-955.

    Google Scholar

    [30] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, Springer, New York, 2013.

    Google Scholar

    [31] D. Terman, Chaotic spikes arising from a model of bursting in excitable membrane, J. Appl. Math., 1991, 51, 1418-1450.

    Google Scholar

    [32] Z. Wang and X. Shi, Chaotic bursting lag synchronization of Hindmarsh-Rose system via a single controller, Applied Mathematics and Computation, 2009, 215, 1091-1097. doi: 10.1016/j.amc.2009.06.039

    CrossRef Google Scholar

    [33] A. Yagi, Exponential attractors for competing species model with cross-diffusions, Discrete and Continuous Dynamical Systems, Series A, 2008, 22, 1091-1020. doi: 10.3934/dcds.2008.22.1091

    CrossRef Google Scholar

    [34] Y. You, Global attractor of Gray-Scott equations, Comm. Pure Appl. Anal., 2008, 7, 947-970. doi: 10.3934/cpaa.2008.7.947

    CrossRef Google Scholar

    [35] Y. You, Dynamics of three-component reversible Gray-Scott model, Discrete and Continuous Dynamical Systems, Series B, 2010, 14, 1671-1688. doi: 10.3934/dcdsb.2010.14.1671

    CrossRef Google Scholar

    [36] Y. You, Global dynamics and robustness of reversible autocatalytic reaction-diffusion systems, Nonlinear Analysis, Series A, 2012, 75, 3049-3071. doi: 10.1016/j.na.2011.12.002

    CrossRef Google Scholar

    [37] Y. You, Random attractors and robustness for stochastic reversible reaction-diffusion systems, Discrete and Continuous Dynamical Systems, Series A, 2014, 34, 301-333. doi: 10.3934/dcds.2014.34.301

    CrossRef Google Scholar

    [38] F. Zhang, A. Lubbe, Q. Lu and J. Su, On bursting solutions near chaotic regimes in a neuron model, Discrete and Continuous Dynamical Systems, Series S, 2014, 7, 1363-1383. doi: 10.3934/dcdss.2014.7.1363

    CrossRef Google Scholar

Article Metrics

Article views(2479) PDF downloads(361) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint