2020 Volume 10 Issue 6
Article Contents

Lijun Zhang, Jianming Zhang. STABILITY AND HOPF BIFURCATION ANALYSIS ON A SPRUCE-BUDWORM MODEL WITH DELAY[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2711-2721. doi: 10.11948/20200084
Citation: Lijun Zhang, Jianming Zhang. STABILITY AND HOPF BIFURCATION ANALYSIS ON A SPRUCE-BUDWORM MODEL WITH DELAY[J]. Journal of Applied Analysis & Computation, 2020, 10(6): 2711-2721. doi: 10.11948/20200084

STABILITY AND HOPF BIFURCATION ANALYSIS ON A SPRUCE-BUDWORM MODEL WITH DELAY

  • In this paper, the dynamics of a spruce-budworm model with delay is investigated. We show that there exists Hopf bifurcation at the positive equilibrium as the delay increases. Some sufficient conditions for the existence of Hopf bifurcation are obtained by investigating the associated characteristic equation. By using the theory of normal form and center manifold, explicit expression for determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions are presented.
    MSC: 34K18, 34K20, 34K25
  • 加载中
  • [1] J. Banerjee, S. K. Sasmal and R. K. Layek, Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey, BioSystems, 2019, 180, 19-37. doi: 10.1016/j.biosystems.2019.02.011

    CrossRef Google Scholar

    [2] Y. Dai, P. Yang, Z. Luo and Y. Lin, Bogdanov-Takens bifurcation in a delayed Michaelis-Menten type ratio-dependent predator-prey system with prey Harvesting, J. Appl. Anal. Compu., 2019, 9(4), 1333-1346.

    Google Scholar

    [3] H. Ding, J. Ji and L. Chen, Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics, Mech. Syst. Signal Pr., 2019, 121, 675-688. doi: 10.1016/j.ymssp.2018.11.057

    CrossRef Google Scholar

    [4] S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay, J. Appl. Anal. Compu., 2019, 9(2), 638-654.

    Google Scholar

    [5] B. D. Hassard, N. D. Kazarinoff and Y. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.

    Google Scholar

    [6] C. S. Holling, Some characteristics of simple types of predation and parasitism, Can. Entomol., 1959, 91(7), 385-398. doi: 10.4039/Ent91385-7

    CrossRef Google Scholar

    [7] U. Kumara, P. S. Mandal and E. Venturino, Impact of Allee effect on an eco-epidemiological system, Ecol. Complex., 2020, 42, 100828. doi: 10.1016/j.ecocom.2020.100828

    CrossRef Google Scholar

    [8] W. Liu, D. Xiao and Y. Yi, Relaxation oscillations in a class of predator-prey systems, J. Diff. Equ., 2003, 188, 306-331. doi: 10.1016/S0022-0396(02)00076-1

    CrossRef Google Scholar

    [9] D. Ludwig, D. D. Jones and C. S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. Anim. Ecol., 1978, 47, 315-332. doi: 10.2307/3939

    CrossRef Google Scholar

    [10] N. Martinez-Jeraldo and P. Aguirre, Allee effect acting on the prey species in a Leslie-Gower predation model, Nonlinear Anal.-Real World Appl., 2019, 45, 895-917. doi: 10.1016/j.nonrwa.2018.08.009

    CrossRef Google Scholar

    [11] R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 1977, 269, 471-477. doi: 10.1038/269471a0

    CrossRef Google Scholar

    [12] S. Muratori and S. Rinaldi, Remarks on competitive coexistence, SIAM J. Appl. Math., 1989, 49, 1462-1472. doi: 10.1137/0149088

    CrossRef Google Scholar

    [13] T. Nagatani, G. Ichinose and Y. Katsumata, Allee effect with time-varying migration on heterogeneous graphs, Phys. A, 2019, 527, 121276. doi: 10.1016/j.physa.2019.121276

    CrossRef Google Scholar

    [14] A. Rasmussen, J. Wyller and J. Vik, Relaxation oscillations in spruce-budworm interactions, Nonlinear Anal., Real World Appl., 2011, 12, 304-319. doi: 10.1016/j.nonrwa.2010.06.017

    CrossRef Google Scholar

    [15] C. Rebelo and C. Soresina, Coexistence in seasonally varying predator-prey systems with Allee effect, Nonlinear Anal.-Real World Appl., 2020, 55, 103140. doi: 10.1016/j.nonrwa.2020.103140

    CrossRef Google Scholar

    [16] Y. Song, H. Jiang, Q. Liu and Y. Yuan, Spatiotemporal dynamics of the diffusive Mussel-Algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Sys., 2017, 16(4), 2030-2062. doi: 10.1137/16M1097560

    CrossRef Google Scholar

    [17] X. Tan, H. Ding and L. Chen, Nonlinear frequencies and forced responses of pipes conveying fluid with a coupled Timoshenko model, J. Sound Vib., 2019, 455, 241-255. doi: 10.1016/j.jsv.2019.05.019

    CrossRef Google Scholar

    [18] N. Wang and M. Han, Slow-fast dynamics of Hopfield spruce-budworm model with memory effects, Adv. Diff. Equ., 2016, 2016, 73. doi: 10.1186/s13662-016-0804-8

    CrossRef Google Scholar

    [19] F. Wei, C. Wang and S. Yuan, Spatial Dynamics of a Diffusive Predator-prey Model with Leslie-Gower Functional Response and Strong Allee Effect, J. Nonlinear Model. Anal., 2020, 2(2), 267-285.

    Google Scholar

    [20] S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal.-Real World Appl., 2019, 48, 12-39. doi: 10.1016/j.nonrwa.2019.01.004

    CrossRef Google Scholar

    [21] J. Zhang, L. Zhang and Y. Bai, Stability and Bifurcation Analysis on a Predator-prey System with the Weak Allee Effect, Mathematics, 2019, 7, 432. doi: 10.3390/math7050432

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(2411) PDF downloads(268) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint