2021 Volume 11 Issue 3
Article Contents

Jingke Wu, Rong An, Yuan Li. OPTIMAL $ H^1 $ ERROR ANALYSIS OF A FRACTIONAL STEP FINITE ELEMENT SCHEME FOR A HYBRID MHD SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1535-1556. doi: 10.11948/20200277
Citation: Jingke Wu, Rong An, Yuan Li. OPTIMAL $ H^1 $ ERROR ANALYSIS OF A FRACTIONAL STEP FINITE ELEMENT SCHEME FOR A HYBRID MHD SYSTEM[J]. Journal of Applied Analysis & Computation, 2021, 11(3): 1535-1556. doi: 10.11948/20200277

OPTIMAL $ H^1 $ ERROR ANALYSIS OF A FRACTIONAL STEP FINITE ELEMENT SCHEME FOR A HYBRID MHD SYSTEM

  • Corresponding author: Email: liyuan@wzu.edu.cn (Y. Li)
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11771337) and National Science Foundation of Zhejiang Province (LY18A010021)
  • This paper presents a fractional step finite element scheme for a hybrid MHD system coupled by the nonstationary Navier-Stokes equations and the steady Maxwell equations, which can be viewed that the magnetic phenomena reach their steady state "infinitely" faster than the fluid hydrodynamics phenomena. The proposed fractional step scheme has the following features: the first one is that the proposed scheme is a decoupled scheme, which means the magnetic field and velocity field can be solved independently at the same time discrete level. The second one is that the nonlinearity and the divergence-free of the Navier-Stokes equations are splitted by introducing an intermediate velocity field. We focus on a rigorous error analysis and obtain the optimal $ {\textbf{H}}^1 $ convergence order $ \mathcal O(\Delta t+h) $ for the magnetic and the velocity under the time step condition $ \Delta t = \mathcal O (h) $, where $ h $ is the mesh size. Finally, numerical results are shown to illustrate the theoretical convergence analysis.

    MSC: 65M12, 76W05
  • 加载中
  • [1] R. An, Error analysis of a new fractional-step method for the incompressible Navier-Stokes equations with variable density, J. Sci. Comput., 2020, 84, article number: 3.

    Google Scholar

    [2] R. An and Y. Li, Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations, Appl. Numer. Math., 2017, 112, 167-181. doi: 10.1016/j.apnum.2016.10.010

    CrossRef Google Scholar

    [3] R. An and C. Zhou, Error analysis of a fractional-step method for magnetohydrodynamics equations, J. Comput. Appl. Math., 2017, 313, 168-184. doi: 10.1016/j.cam.2016.09.005

    CrossRef Google Scholar

    [4] J. Blasco and R. Codina, Error estimates for an operator-splitting method for incompressible flows, Appl. Numer. Math., 2004, 51, 1-17. doi: 10.1016/j.apnum.2004.02.004

    CrossRef Google Scholar

    [5] H. Gao and W. Qiu, A semi-implict energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations, Comput. Methods Appl. Mech. Engrg., 2019, 346, 982-1001. doi: 10.1016/j.cma.2018.09.037

    CrossRef Google Scholar

    [6] J. Gerbeau, A stabilized finite elemenet method for the incompressible magnetohydrodynamic equations, Numer. Math., 2000, 87, 83-111. doi: 10.1007/s002110000193

    CrossRef Google Scholar

    [7] J. Gerbeau and C. Le Bris, Mathematical study of a coupled system arising in magnetohydrodynamics, Technical Report CERMICS.

    Google Scholar

    [8] J. Gerbeau and C. Le Bris, A coupled system arising in magnetohydrodynamics, Appl. Math. Lett., 1999, 12, 53-57.

    Google Scholar

    [9] J. Gerbeau and C. Le Bris, T. Lelièvre, Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Oxford University Press, Oxford, 2006.

    Google Scholar

    [10] F. Guillén-González and M. V. Dedondo-Neble, Spatial error estimates for a finite element viscosity-splitting scheme for the Navier-Stokes equations, Inter. J. Numer. Anal. Model., 2013, 10, 826-844.

    Google Scholar

    [11] M. Gunzburger, A. Meir and J. Peterson, On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompresible magnetohydrodynamics, Math. Comp., 1991, 56, 523-563. doi: 10.1090/S0025-5718-1991-1066834-0

    CrossRef Google Scholar

    [12] Y. He, Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations, IMA J. Numer. Anal., 2015, 35, 767-801. doi: 10.1093/imanum/dru015

    CrossRef Google Scholar

    [13] J. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem Part IV: error analysis for second-order time discretization, SIAM J. Numer. Anal., 1990, 27, 353-384. doi: 10.1137/0727022

    CrossRef Google Scholar

    [14] Y. Li, Y. Ma and R. An, Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem, Appl. Numer. Math., 2018, 127, 142-163. doi: 10.1016/j.apnum.2018.01.005

    CrossRef Google Scholar

    [15] Y. Li and X. Luo, Second-order semi-implicit Crank-Nicolson scheme for a coupled magnetohydrodynamics system, Appl. Numer. Math., 2019, 145, 48-68. doi: 10.1016/j.apnum.2019.06.001

    CrossRef Google Scholar

    [16] A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamic system, ESAIM: M2AN, 2008, 42, 1065-1087. doi: 10.1051/m2an:2008034

    CrossRef Google Scholar

    [17] D. Schötzau, Mixed finite element methods for stationary incompressible magnetohydrodynamics, Numer. Math., 2004, 96, 771-800. doi: 10.1007/s00211-003-0487-4

    CrossRef Google Scholar

    [18] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.

    Google Scholar

    [19] X. Yang, G. Zhang and X. He, Convergence analysis of an Unconditionally energy stable projection scheme for magnetohydrodynamic equations, Appl. Numer. Math., 2019, 136, 235-256. doi: 10.1016/j.apnum.2018.10.013

    CrossRef Google Scholar

    [20] G. Zhang, X. He and X. Yang, A decoupled, linear and unconditionally energy stable scheme with finite element discretizations for magnetohydrodynamic equations, J. Sci. Comput., 2019, 81, 1678-1711. doi: 10.1007/s10915-019-01059-1

    CrossRef Google Scholar

    [21] G. Zhang, X. He and X. Yang, Fully decoupled, linear and unconditionally energy stable time discretization for solving the magnetohydrodynamic equations, J. Comput. Appl. Math., 2020, 369, 112636. doi: 10.1016/j.cam.2019.112636

    CrossRef Google Scholar

    [22] G. Zhang and Y. He, Decoupled schemes for unsteady MHD equations Ⅱ: finite element spatial discretization and numerical implementation, Comput. Math. Appl., 2015, 69, 1390-1406. doi: 10.1016/j.camwa.2015.03.019

    CrossRef Google Scholar

    [23] Y. Zhang, Y. Hou and L. Shan, Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows, Numer. Methods Part. Diff. Equa., 2015, 31, 2169-2208. doi: 10.1002/num.21989

    CrossRef Google Scholar

Tables(2)

Article Metrics

Article views(1432) PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint