2021 Volume 11 Issue 5
Article Contents

G. Deugoue, J. K. Djoko, A. C. Fouape. GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2423-2458. doi: 10.11948/20200409
Citation: G. Deugoue, J. K. Djoko, A. C. Fouape. GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION[J]. Journal of Applied Analysis & Computation, 2021, 11(5): 2423-2458. doi: 10.11948/20200409

GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION: EXISTENCE RESULT AND TIME DISCRETE APPROXIMATION

  • Author Bio: Email: agdeugoue@yahoo.fr(G. Deugoue); Email: adeletsanou@yahoo.fr(A. C. Fouape)
  • Corresponding author: Email: jules.djokokamdem@gmail.com(J. K. Djoko) 
  • We provide in this article an investigation of the globally modified Navier-Stokes problem coupled with the heat equation. After deriving the variational formulation of this problem, we prove the existence and the uniqueness of the solution using the method of Faedo-Galerkin and some compactness results. Next, we propose a time discretization of these equations based on Euler's implicit scheme. We prove the existence of solution with the aid of Brouwer's fixed point and study the stability of discrete in time solution by using the energy approach.

    MSC: 65M12, 76D05
  • 加载中
  • [1] R. A. Adams, Sobolev spaces, Academic Press, New York San Francisco London, 1975.

    Google Scholar

    [2] R. Agroum, C. Bernardi and J. Satouri, Spectral discretization of time-dependent Navier-Stokes problem coupled with the heat equation, App. Math. Comp., 2015, 268(1), 59-82.

    Google Scholar

    [3] R. Agroum, S. M. Aouadi, C. Bernardi and J. Satouri, Spectral discretization of the Navier-Stokes equations coupled with the heat equation, ESAIM: M2AN., 2015, 49, 621-639. doi: 10.1051/m2an/2014049

    CrossRef Google Scholar

    [4] H. Brezis, Functional Analysis, Sobolev Spaces and partial differential equations, Springer, 2010.

    Google Scholar

    [5] T. Caraballo, P. E. Kloeden and J. Real, Unique strong solutions and $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 2006, 6(3), 411-436. doi: 10.1515/ans-2006-0304

    CrossRef $V$-attractors of a three dimensional system of globally modified Navier-Stokes equations" target="_blank">Google Scholar

    [6] T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discr. Cont. Dyn. Syst. Ser. B., 2008, 10(4), 761-781.

    Google Scholar

    [7] T. Caraballo, J. Real and A. M. Márquez, Three-dimensional system of globally modified Navier-Stokes equations with delay, Int. J. Bifurcat. Chaos Appl. Sci. Eng., 2010, 20(9), 2869-2883. doi: 10.1142/S0218127410027428

    CrossRef Google Scholar

    [8] T. Caraballo and P. E. Kloeden, The three-dimensional globally modified Navier-Stokes equations: recent developments, A. Johann, H. P. Kruse, F. Rupp (eds.) Recent Trends in Dynamical Systems: Proceedings of a Conference in Honor of Jürgen Scheurle. Springer Proceedings in Mathematics and Statistics., 2013, 35, 473-492.

    Google Scholar

    [9] P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.

    Google Scholar

    [10] G. Deugoué and J. K. Djoko, On the time discretization for the globally modified three-dimensional Navier-Stokes equations, J. Comput. Appl. Math., 2011, 235(8), 2015-2029. doi: 10.1016/j.cam.2010.10.003

    CrossRef Google Scholar

    [11] G. Deugoué, J. K. Djoko, A. C. Fouapé and A. N. Ngana, Unique strong solutions and V-attractor of a three dimensional globally modified magnetohydrodynamics equations, Commun. Pure Appl. Anal., 2020, 19(3), 1505-1535.

    Google Scholar

    [12] B. Ewald and F. Tone, Approximation of the long term dynamics of the dynamical system generated by the two-dimensional thermohydraulics equations, IJNAM., 2013, 10(3), 509-535.

    Google Scholar

    [13] V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes Equations: Theory and Algorithms, Springer Verlag, 1986.

    Google Scholar

    [14] T. Heister, M. A. Olshanskii and L. G. Rebholz, Unconditional long-time stability of a velocity-vorticity method for the 2D Navier-Stokes equations, Numer. Math., 2017, 135, 143-167. doi: 10.1007/s00211-016-0794-1

    CrossRef Google Scholar

    [15] Y. He, P. Huang and J. Li, $H^2$-stability of some second order fully discrete schemes for the Navier-Stokes equations, Discr. Cont. Dyn. Syst. Ser. B., 2019, 24(6), 2745-2780.

    $H^2$-stability of some second order fully discrete schemes for the Navier-Stokes equations" target="_blank">Google Scholar

    [16] Y. He, P. Huang and X. Feng, $H^2$ Stability of the first order fully discrete schemes for the time dependent Navier-Stokes equations, J. Sci. Comput., 2015, 62, 230-264. doi: 10.1007/s10915-014-9854-9

    CrossRef $H^2$ Stability of the first order fully discrete schemes for the time dependent Navier-Stokes equations" target="_blank">Google Scholar

    [17] M. M. Hernandez, L. G. Rebholz, C. Tone and F. Tone, Stability of the Crank-Nicolson-Adams-Bashforth scheme for the 2D Leray-alpha model, Numer. Methods. Partial. Differ. Equ., 2016, 32, 1155-1183. doi: 10.1002/num.22045

    CrossRef Google Scholar

    [18] P. E. Kloeden, P. Marn-Rubio and J. Real, Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations, Commun. Pure Appl. Anal., 2009, 8(3), 785-802. doi: 10.3934/cpaa.2009.8.785

    CrossRef Google Scholar

    [19] P. E. Kloeden and J. Valero, The weak connectnedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations, Proc. R. Soc. Lond. Ser. A Math. Phys Engs. Sci., 2007, 463(2082), 1491-1508.

    Google Scholar

    [20] J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, 1969.

    Google Scholar

    [21] P. Marín-Rubio, A. M. Márquez-Durán and J. Real, Asymptotic behavior of solutions for three dimensional system of globally modified Navier-Stokes equations with locally lipschitz delay term, Nonlinear Anal., 2013, 79, 68-79. doi: 10.1016/j.na.2012.11.006

    CrossRef Google Scholar

    [22] M. Romito, The uniqueness of weak solutions of the Globally modified Navier-Stokes equations, Adv. Nonlinear Stud., 2009, 9(2), 425-427. doi: 10.1515/ans-2009-0209

    CrossRef Google Scholar

    [23] M. Rockner and X. Zhang, Tamed 3. D Navier Stokes equation: existence, uniqueness and regularity, Infin. Dimension. Analys., Quantum Probability and Related Topics., 2009, 12(4), 525-549. doi: 10.1142/S0219025709003859

    CrossRef Google Scholar

    [24] M. Rockner and X. Zhang, Stochastic tamed 3. D Navier Stokes equation: existence, uniqueness and ergodicity, Probab. Theory Relat. Fields., 2009, 145, 211-267. doi: 10.1007/s00440-008-0167-5

    CrossRef Google Scholar

    [25] J. Su and Y. He, The almost unconditional convergence of the Euler implicit/explicit scheme for the three dimensional nonstationary Navier-Stokes equations, Discr. Cont. Dyn. Syst. Ser. B., 2017, 22(9), 3421-3438.

    Google Scholar

    [26] T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model, Applicable Anal., 2017, 96(16), 345-383.

    $\mathbb{V}$-attractor of a three dimensional globally modified Cahn-Hilliard-Navier-Stokes model" target="_blank">Google Scholar

    [27] T. Tachim Medjo, Unique strong and $\mathbb{V}$-attractor of a three-dimensional globally modified two-phase flow model, Ann. Mat. Pura Appl., 2018, 197, 843-868. doi: 10.1007/s10231-017-0706-8

    CrossRef $\mathbb{V}$-attractor of a three-dimensional globally modified two-phase flow model" target="_blank">Google Scholar

    [28] T. Tachim Medjo, C. Tone and F. Tone, Long-time stability of the implicit Euler scheme for a three dimensional globally modified two-phase flow model, Asymptot. Anal., 2008, 118(3), 161-208.

    Google Scholar

    [29] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, in: Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, New York, Oxford, 1977.

    Google Scholar

    [30] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Second Edition, SIAM, Philadelphia, 1995.

    Google Scholar

    [31] R. Temam. Infinite dimensional dynamical systems in mechanics and physics, 2nd ed. vol. 68, Applied mathematics at science: Springer-Verlag, New York, 1997.

    Google Scholar

    [32] F. Tone, On the Long-Time $H^2$ Stability of the Implicit Euler Scheme for the 2D Magnetohydrodynamics Equations, J. Sci. Comput., 2009, 38, 331-348. doi: 10.1007/s10915-008-9236-2

    CrossRef $H^2$ Stability of the Implicit Euler Scheme for the 2D Magnetohydrodynamics Equations" target="_blank">Google Scholar

    [33] F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical system generated by the two dimensional Rayleigh-Bernard convection problem, Analysis and Applications, 2011, 9(4), 421-446. doi: 10.1142/S0219530511001935

    CrossRef Google Scholar

    [34] I. Vishik, A. I. Komech and A. V. Fursikov, Some mathematical problems of statistical hydromechanics, Uspekhi Mat. Nauk., 1979, 209(5), 135-210.

    Google Scholar

    [35] Z. Zhang, Renormalized notes for Navier-Stokes equations by Roger Temam, Charl. Univ. Math. J., 2011, 2(17), 116-186.

    Google Scholar

Article Metrics

Article views(1940) PDF downloads(174) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint