2023 Volume 13 Issue 1
Article Contents

Yue Li, Hongjun Cao. BIFURCATION AND COMPARISON OF A DISCRETE-TIME HINDMARSH-ROSE MODEL[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 34-56. doi: 10.11948/20210204
Citation: Yue Li, Hongjun Cao. BIFURCATION AND COMPARISON OF A DISCRETE-TIME HINDMARSH-ROSE MODEL[J]. Journal of Applied Analysis & Computation, 2023, 13(1): 34-56. doi: 10.11948/20210204

BIFURCATION AND COMPARISON OF A DISCRETE-TIME HINDMARSH-ROSE MODEL

  • In this paper, a Hindmarsh-Rose model discretized by a nonstandard finite difference (NSFD) scheme is considered. Bifurcation behaviors are compared between the model obtained by the forward Euler scheme and the model obtained by the NSFD scheme. Through analytical and numerical comparisons, the Neimark-Sacker bifurcation of the model discretized by the NSFD method is closer to the Hopf bifurcation of the original continuous Hindmarsh-Rose model than that discretized by the forward Euler method. Moreover, due to the NSFD method's better stability and convergence, the integral step size can be chosen larger in the NSFD scheme. And much more dynamic behaviors can be obtained by using the NSFD scheme than those in the forward Euler scheme. These confirmed results can at least guarantee true available numerical results to investigate complex neuron dynamical systems.

    MSC: 34, 37
  • 加载中
  • [1] E. M. Adamu, K. C. Patidar and A. Ramanantoanina, An unconditionally stable nonstandard finite difference method to solve a mathematical model describing Visceral Leishmaniasis, Math. Comput. Simul., 2021, 187(12), 171-190.

    Google Scholar

    [2] H. Al-Kahby, F. Dannan and S. Elaydi, Non-standard Discretization Methods for Some Biological Models, World Scientific, Singapore, 2000.

    Google Scholar

    [3] M. Biswas and N. Bairagi, On the dynamic consistency of a two-species competitive discrete system with toxicity: Local and global analysis, J. Comput. Appl. Math., 2020, 363, 145-155. doi: 10.1016/j.cam.2019.06.005

    CrossRef Google Scholar

    [4] S. Chen, C. Cheng and Y. Lin, Application of a two-dimensional hindmarsh-rose type model for bifurcation analysis, Int. J. Bifurcation Chaos, 2013, 23(3), 50055.

    Google Scholar

    [5] Q. A. Dang and M. T. Hoang, Numerical dynamics of nonstandard finite difference schemes for a computer virus propagation model, Int. J. Dyn. Control., 2020, 8(3), 772-778. doi: 10.1007/s40435-019-00604-y

    CrossRef Google Scholar

    [6] D. T. Dimitrov and H. V. Kojouharov, Nonstandard finite-difference methods for predator-prey models with general functional response, Math. Comput. Simul., 2008, 78(1), 1-11. doi: 10.1016/j.matcom.2007.05.001

    CrossRef Google Scholar

    [7] C. C. Felicio and P. C. Rech, Arnold tongues and the Devil's staircase in a discrete-time Hindmarsh-Rose neuron model, Phys. Lett. A., 2015, 379(43-44), 2845-2847.

    Google Scholar

    [8] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Springer, New York, 1983.

    Google Scholar

    [9] W. Kahan and R. Li, Unconventional Schemes for a Class of Ordinary Differential Equations-With Applications to the Korteweg-de Vries Equation, J. Comput. Phys., 1997, 134(2), 316-331. doi: 10.1006/jcph.1997.5710

    CrossRef Google Scholar

    [10] V. A. Kumar, R. M. Kumar and C. Carlo, A numerical scheme for a class of generalized Burgers' equation based on Haar wavelet nonstandard finite difference method, Appl. Numerical Math., 2021, 168, 41-54. doi: 10.1016/j.apnum.2021.05.019

    CrossRef Google Scholar

    [11] A. P. Kuznetsov and Y. V. Sedova, The simplest map with three-frequency quasi-periodicity and quasi-periodic bifurcations, Int. J. Bifurcation Chaos, 2016, 26(8), 1630019. doi: 10.1142/S0218127416300196

    CrossRef Google Scholar

    [12] Y. A. Kuznetsov, Elements of applied bifurcation theory, Second Edition, Springer, New York, 1999.

    Google Scholar

    [13] B. Li and Q. He, Bifurcation analysis of a two-dimensional discrete Hindmarsh-Rose type model, Adv. Differ. Equ., 2019, 2019(1), 1-17. doi: 10.1186/s13662-018-1939-6

    CrossRef Google Scholar

    [14] B. Li and Z. He, Bifurcations and chaos in a two-dimensional discrete Hindmarsh-Rose model, Nonlinear Dyn., 2014, 76(1), 697-715. doi: 10.1007/s11071-013-1161-8

    CrossRef Google Scholar

    [15] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1993.

    Google Scholar

    [16] S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model, Phys. D., 2004, 188(1), 134-151.

    Google Scholar

    [17] M. Namjoo, M. Zeinadini and S. Zibaei, Nonstandard finite-difference scheme to approximate the generalized Burgers-Fisher equation, Math. Meth. Appl. Sci., 2018, 41(17), 8212-8228. doi: 10.1002/mma.5283

    CrossRef Google Scholar

    [18] E. Ott, Chaos in dynamical systems, Cambridge University Press, Cambridge, UK, 1993.

    Google Scholar

    [19] L. I. W. Roeger, Nonstandard finite-difference schemes for the Lotka-Volterra systems: generalization of Mickens's method, J. Differ. Equ. Appl., 2006, 12(9), 937-948. doi: 10.1080/10236190600909380

    CrossRef Google Scholar

    [20] L. I. W. Roeger and G. Lahodny, Dynamically consistent discrete Lotka-Volterra competition systems, J. Differ. Equ. Appl., 2013, 19(2), 191-200. doi: 10.1080/10236198.2011.621894

    CrossRef Google Scholar

    [21] L. I. W. Roeger, Local Stability of Euler's and Kahan's Methods, J. Differ. Equ. Appl., 2004, 10(6), 601-614. doi: 10.1080/10236190410001659723

    CrossRef Google Scholar

    [22] S. Tsuji, T. Ueta, H. Kawakami, H. Fujii and K. Aihara, Bifurcations in two-dimensional Hindmarsh-Rose type model, Int. J. Bifurcation Chaos, 2007, 17(3), 985-998. doi: 10.1142/S0218127407017707

    CrossRef Google Scholar

    [23] H. Wang, Y. Zheng and Q. Lu, Stability and bifurcation analysis in the coupled HR neurons with delayed synaptic connection, Nonlinear Dyn., 2017, 88(3), 2091-2100. doi: 10.1007/s11071-017-3364-x

    CrossRef Google Scholar

    [24] S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Springer, New York, 1990.

    Google Scholar

    [25] Y. Yu and H. Cao, Integral step size makes a difference to bifurcations of a discrete-time Hindmarsh-Rose model, Int. J. Bifurcation Chaos, 2015, 25(2), 1550029.

    Google Scholar

Figures(5)  /  Tables(1)

Article Metrics

Article views(2182) PDF downloads(604) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint