2022 Volume 12 Issue 2
Article Contents

Sayed Allamah Iqbal, Md. Golam Hafez, Yu-Ming Chu, Choonkil Park. DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 770-789. doi: 10.11948/20210324
Citation: Sayed Allamah Iqbal, Md. Golam Hafez, Yu-Ming Chu, Choonkil Park. DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 770-789. doi: 10.11948/20210324

DYNAMICAL ANALYSIS OF NONAUTONOMOUS RLC CIRCUIT WITH THE ABSENCE AND PRESENCE OF ATANGANA-BALEANU FRACTIONAL DERIVATIVE

  • Author Bio: Email: hafez@cuet.ac.bd (M. G. Hafez)
  • Corresponding author: Email: chuyuming@zjhu.edu.cn(Y-M. Chu) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China
  • The Fractional-order derivative (FOD) has a rich history in mathematical science. In comparison, the half derivative has not been extensively used in applied science and engineering. On the other hand, it is widely applicable in many branches of engineering modeling, especially control fractional-order proportional integral derivative(PID), semi-infinite lossy transmission, and many more. Thus, this work investigates the classical RLC circuit with the sense of the Atangana-Baleanu FOD. Concurrently, the Lyapunov spectral analysis is applied to determine whether or not stability and instability appear in the RLC circuit. In the first look, the RLC likes a straightforward dynamical system when the external driving force is zero. But, the dynamical system of the RLC evolves more complicated, and the wandering phase spaces do not illustrate the stability or instability when the time-dependent driving force is not zero. As a result, the Lyapunov exponents play a significant role to analyze the trait of the trajectories of the phase state. It is found from the bifurcation plots and Lyapunov exponent's spectral analysis that the non-autonomous dynamical systems lead to instability and the chaotic state with the manifestation of the local dynamical system, which switches to a stable spiral node with the presence Atangana-Baleanu FOD.

    MSC: 37M20, 37M05, 34A08, 65P20, 65P30, 65P40
  • 加载中
  • [1] A. Atangana and T. R. Alqahtani, Numerical approximation of the space-time Caputo-Fabrizio fractional derivative and application to groundwater pollution equation, Adv. Differ. Equ., 2016, 2016, 156. doi: 10.1186/s13662-016-0871-x

    CrossRef Google Scholar

    [2] A. Atangana and K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 2018, 13, 3. doi: 10.1051/mmnp/2018010

    CrossRef Google Scholar

    [3] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solit. & Fract., 2016, 89, 447-454.

    Google Scholar

    [4] E. Afshari and A. Hajimiri, Nonlinear transmission lines for pulse shaping in silicon, IEEE J. Solid-State Circuits, 2005, 40, 744-752. doi: 10.1109/JSSC.2005.843639

    CrossRef Google Scholar

    [5] M. Al-Dhaifallah, N. Kanagaraj and K. S. Nisar, Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System, Math. Problems Eng., 2018, 2018, 1.

    Google Scholar

    [6] A. O. Almatroud, A. A. Khennaoui, A. Ouannas, G. Grassi, M. M. Al-sawalha and A. Gasri, Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control, Entropy, 2020, 22, 12. DOI: 10.3390/e22121344.

    CrossRef Google Scholar

    [7] S. Akter, M. G. Hafez, Y. Chu and M. D. Hossain, Analytic wave solutions of beta space fractional Burgers equation to study the interactions of multi-shocks in thin viscoelastic tube filled, Alexandr. Eng. J., 2021, 60, 877. doi: 10.1016/j.aej.2020.10.016

    CrossRef Google Scholar

    [8] H. M. Baskonus and H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams-Bashforth-Moulton method, Open Math. 2015, 13, 547-556.

    Google Scholar

    [9] S. Banerjee, Dynamics for Engineers, Wiley, 2005.

    Google Scholar

    [10] M. Caputo and F. Mauro, A new Definition of Fractional Derivative without Singular Kernel, PFDA, 2015, 1, 73-85.

    Google Scholar

    [11] M. Caputo and F. Mauro, Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels, PFDA, 2016, 2, 1-11. doi: 10.18576/pfda/020101

    CrossRef Google Scholar

    [12] Z. Chen, K. Djidjeli and W. G. Price, Computing Lyapunov exponents based on the solution expression of the variational system, Applied Math. & Comput., 2006, 174, 982-996.

    Google Scholar

    [13] M. F. Danca and K. Nikolay, Matlab Code for Lyapunov Exponents of Fractional-Order Systems, Intl. Journal of Bifurcation and Chaos, 2018, 28, 1850067. doi: 10.1142/S0218127418500670

    CrossRef Google Scholar

    [14] K. Diethelm, N. J. Ford and A. D. Freed, A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations, Nonlinear Dyn., 2002, 29, 3-22. doi: 10.1023/A:1016592219341

    CrossRef Google Scholar

    [15] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin Heidelberg, 2010.

    Google Scholar

    [16] W. Duan, Nonlinear waves propagating in the electrical transmission line EPL, 2004, 66, 192. doi: 10.1209/epl/i2003-10203-3

    CrossRef Google Scholar

    [17] R. Dhayal, M. Malik, S. Abbas, A. Kumar and R. Sakthivel, Approximation theorems for controllability problem governed by fractional differential equation, Evolution Equations & Cont. Theory, 2021, 10, 411-429.

    Google Scholar

    [18] T. M. Etehad, E. Y. K. Ng, C. Lucas, S. Sadri and M. Ataei, Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions, Infr. Phys. & Tech., 2012, 55, 345-352.

    Google Scholar

    [19] K. Erenturk, Fractional-Order PIλDμ and Active Disturbance Rejection Control of Nonlinear Two-Mass Drive System, IEEE Trans. on Industrial Elect., 2012, 60, 3806-3813.

    Google Scholar

    [20] F. Gómez-AguilarJosé, J. Rosales-García, M. Guía-Calderón and J. Razo-Hernández, Fractional RC and LC Electrical Circuits, Ingeniería, Investigación y Tecnología, 2014, 15, 311-319. doi: 10.1016/S1405-7743(14)72219-X

    CrossRef Google Scholar

    [21] J. Guckenheimer and P. Holmes, Introduction: Differential Equations and Dynamical Systems in Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, New York, Springer, 1983.

    Google Scholar

    [22] C. Holmes and P. Holmes, Second order averaging and bifurcations to subharmonics in duffing's equation, J. of Sound and Vib., 1981, 78, 161-174. DOI: 10.1016/S0022-460X(81)80030-2.

    CrossRef Google Scholar

    [23] M. G. Hafez, S. A. Iqbal, Asaduzzaman and Z. Hammouch, Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution, DCDS-S, 2021, 14, 2245. doi: 10.3934/dcdss.2021058

    CrossRef Google Scholar

    [24] M. G. Hafez, S. A. Iqbal, S. Akhter and M. F. Uddin, Oblique plane waves with bifurcation behaviors and chaotic motion for resonant nonlinear Schrodinger equations having fractional temporal evolution, Results Phys., 2019, 15, 102778. doi: 10.1016/j.rinp.2019.102778

    CrossRef Google Scholar

    [25] M. G. Hafez, Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas, Astrophys Space Sci., 2020, 365, 78. doi: 10.1007/s10509-020-03791-9

    CrossRef Google Scholar

    [26] S. A. Iqbal and M. G. Hafez, Dynamical Analysis of Nonlinear Electrical Transmission Line through Fractional Derivative, 2020 23rd International Conference on Computer and Information Technology, 2020, 1-5.

    Google Scholar

    [27] S. A. Iqbal, M. G. Hafez and S. A. A. Karim, Bifurcation analysis with chaotic motion of oblique plane wave for describing a discrete nonlinear electrical transmission line with conformable derivative, Results Phys., 2020, 18, 103309. doi: 10.1016/j.rinp.2020.103309

    CrossRef Google Scholar

    [28] S. A. Iqbal, Soliton Solutions: Discrete Dynamical Analysis of Nonlinear Vacuum Diode throughout the Discharging Capacitor, International Conference on Automation, Control and Mechatronics for Industry 4.0, Rajshahi-Bangladesh, 2021. DOI: 10.1109/ACMI53878.2021.9528137.

    CrossRef Google Scholar

    [29] M. A. Iqbal, Y. Wang, M. M. Miah, M. S. Osman and Y. Chu, Study on Date-Jimbo-Kashiwara-Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, Fractal Fract., 2022, 6, 12. https://doi.org/10.3390/fractalfract6010004. doi: 10.3390/fractalfract6010004

    CrossRef Google Scholar

    [30] M. Inc et al., New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity, Math., 2020, 5. DOI: 10.3934/math.2020447.

    CrossRef Google Scholar

    [31] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1997.

    Google Scholar

    [32] H. Kristian, Z. Dušan and M. C. Stevan, Fractional RLC circuit in transient and steady state regimes, Commun. Nonlinear Sci. Numer. Simulat., 2021, 96, 105670. doi: 10.1016/j.cnsns.2020.105670

    CrossRef Google Scholar

    [33] A. A. Khennaoui et al., Chaos, control, and synchronization in some fractional-order difference equations, Adv. Differ. Equ., 2029, 2019, 412. DOI: 10.1186/s13662-019-2343-6.

    Google Scholar

    [34] K. Karthikeyan, P. Karthikeyan, H. M. Baskonus, K. Venkatachalam and Y. Chu, Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7954. doi: 10.1002/mma.7954

    CrossRef Google Scholar

    [35] T. D. Leta, W. Liu, A. E. Achab, H. Rezazadeh and A. Bekir, Dynamical Behavior of Traveling Wave Solutions for a (2+1)-Dimensional Bogoyavlenskii Coupled System, Qual. Theory Dyn. Syst., 2021, 20, 14. doi: 10.1007/s12346-021-00449-x.

    CrossRef Google Scholar

    [36] A. Ouannas, A. A. Khennaoui, S. Momani, G. Grassi, and V. T. Pham, Chaos and control of a three-dimensional fractional order discrete-time system with no equilibrium and its synchronization, AIP. Adv., 2020, 10, 045310. DOI: 10.1063/5.0004884.

    CrossRef Google Scholar

    [37] A. Ouannas, A. A. Khennaoui, S. Bendoukha and G. Grassi, On the Dynamics and Control of a Fractional Form of the Discrete Double Scroll, Int. J. of Bifurcation and Chaos, 2019, 29, 1950078. https://doi.org/10.1142/S0218127419500780. doi: 10.1142/S0218127419500780

    CrossRef Google Scholar

    [38] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, 2001.

    Google Scholar

    [39] M. J. W. Rodwell, M. Kamegawa, R. Yu, M. Case, E. Carman and K. Giboney, GaAs Nonlinear transmission lines for picosecond pulse generation and millimeter-wave sampling, IEEE Trans. Microwave Theory Tech., 1991, 39, 1194-1204. doi: 10.1109/22.85387

    CrossRef Google Scholar

    [40] K. Ramasubramanian and M. S. Sriram, A comparative study of computation of Lyapunov spectra with different algorithms, Physica D: Nonlinear Phenomena, 2000, 16, 72-86.

    Google Scholar

    [41] H. Rezazadeh, M. Younis, Shafqat-Ur-Rehman, M. Eslami, M. Bilal and U. Younas, New exact traveling wave solutions to the (2+1)-dimensional Chiral nonlinear Schrödinger equation, Math. Model. Nat. Phenom., 2021, 16, 38. DOI: 10.1051/mmnp/2021001.

    CrossRef Google Scholar

    [42] S. Rashid, S. Sultana, Y. Karaca, A. Khalid and Y. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 2022, 30, 12. https://10.1142/S0218348X22400266.

    Google Scholar

    [43] H. Steven and Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity), CRC Press, 2000.

    Google Scholar

    [44] M. Saqib, I. Khan and S. Shafie, Application of Atangana-Baleanu fractional derivative to MHD channel flow of CMC-based-CNT's nanofluid through a porous medium, Chaos, Solit. & Fract., 2018, 116, 79-85.

    Google Scholar

    [45] J. Sakai and T. Kawata, Analytical study for the ability of nonlinear transmission lines to generate solitons, Chaos, Solit. & Fract., 2009, 39, 2125-2132.

    Google Scholar

    [46] J. Sakai and T. Kawata, Nonlinear Wave Modulation in the Transmission Line, J. Phys. Soc. Jpn., 1976, 41, 1819-1820. doi: 10.1143/JPSJ.41.1819

    CrossRef Google Scholar

    [47] P. Selvaraj, O. M. Kwon, S. H. Lee and R. Sakthivel, Cluster synchronization of fractional-order complex networks via uncertainty and disturbance estimator-based modified repetitive control, J. of the Franklin Instit., 2021, 358, 9951. doi: 10.1016/j.jfranklin.2021.10.008

    CrossRef Google Scholar

    [48] S. Sweetha, R. Sakthivel, V. Panneerselvam and Y. Ma, Nonlinear Fault-Tolerant Control Design for Singular Stochastic Systems With Fractional Stochastic Noise and Time-Delay, IEEE Access, 2021, 9, 153647-153655. DOI: 10.1109/ACCESS.2021.3128410.

    CrossRef Google Scholar

    [49] S. Sweetha, R. Sakthivel and S. Harshavarthini, Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults, Chaos, Solit. & Fract., 2012, 142, 110312.

    Google Scholar

    [50] I. Talbi, A. Ouannas, G. Grassi, A. A. Khennaoui, V. T. Pham and D. Baleanu, Fractional Grassi–Miller Map Based on the Caputo h-Difference Operator: Linear Methods for Chaos Control and Synchronization, Discrete Dyn. Nat. Soc., 2020, 2020, e8825694. DOI: 10.1155/2020/8825694.

    CrossRef Google Scholar

    [51] M. F. Uddin, M. G. Hafez and S. A. Iqbal, Plane Wave Solutions With Dynamical Behaviors for Heisenberg Model of Ferromagnetic Spin Chain With Beta Derivative Evolution and Obliqueness, SSRN Electronic Journal, 2021. http://dx.doi.org/10.2139/ssrn.3893380. doi: 10.2139/ssrn.3893380

    CrossRef Google Scholar

    [52] Y. Ueda, Randomly transitional phenomena in the system governed by Duffing's equation, J. Stat. Phys., 1979, 20, 181-196. DOI: 10.1007/BF01011512.

    CrossRef Google Scholar

    [53] M. F. Uddin, M. G. Hafez, I. Hwang and C. Park, Effect of Space Fractional Parameter on Nonlinear Ion Acoustic Shock Wave Excitation in an Unmagnetized Relativistic Plasma, Front. Phys., 2022, 9, 766035. DOI: 10.3389/fphy.2021.766035

    CrossRef Google Scholar

    [54] A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena, 1985, 16, 285-317. doi: 10.1016/0167-2789(85)90011-9

    CrossRef Google Scholar

    [55] Z. U. A. Zafar, N. Sene, H. Rezazadeh and N. Esfandian, Tangent nonlinear equation in context of fractal fractional operators with nonsingular kernel, Math. Sci., 2021. DOI: 10.1007/s40096-021-00403-7.

    CrossRef Google Scholar

Figures(22)  /  Tables(1)

Article Metrics

Article views(3040) PDF downloads(221) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint