2024 Volume 14 Issue 5
Article Contents

Boling Guo, Qi Guo. THE SMOOTH SOLUTIONS OF A CLASS OF COUPLED KDV EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2505-2522. doi: 10.11948/20220477
Citation: Boling Guo, Qi Guo. THE SMOOTH SOLUTIONS OF A CLASS OF COUPLED KDV EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2505-2522. doi: 10.11948/20220477

THE SMOOTH SOLUTIONS OF A CLASS OF COUPLED KDV EQUATIONS

  • This paper is devoted to the study of the periodic initial boundary value problem and Cauchy problem for the coupled KdV equations. By the Galerkin method and sequential approximation, we get a series of a priori estimates and establish the existence of classical local solution to the periodic problem for the system. Then we obtain the existence and uniqueness of global smooth solution when the coefficients of the system satisfy certain conditions by energy method, conserved quantities and nonconservative quantity $ I(u, v) $.

    MSC: 35Q53, 35B45
  • 加载中
  • [1] E. Basako$\check{g}$lu and T. B. G$\ddot{u}$rel, Smoothing and global attractors for the Hirota-Satsuma system on the torus, arXiv preprint, 2022. arXiv: 2204.12480.

    Google Scholar

    [2] X. Cheng, J. Li and J. Xue, Coupled KdV equation: Similarity reduction and analytical solution, Acta Phys. Sin., 2011, 60(11).

    Google Scholar

    [3] B. Deconinck, N. Nguyen and B. Segal, The interaction of long and short waves in dispersive media, J. Phys. A., 2016, 49(41).

    Google Scholar

    [4] L. Ding and G. Wei, Periodic solution of a class of coupled KdV equation, J. Univ. Shanghai. Sci. Technol., 2013, 35(6), 516–522.

    Google Scholar

    [5] R. Dodd, J. Eilbeck, et al, Solitons and Nonlinear Wave Equations, Academic Press, 1982.

    Google Scholar

    [6] M. Funakoshi and M. Oikawa, The resonant interaction between a long internal gravity wave and a surface gravity wave packet, J. Phys. Soc. Jpn., 1983, 52(6), 1982–1995. doi: 10.1143/JPSJ.52.1982

    CrossRef Google Scholar

    [7] C. Gardner, Korteweg-de vries equation and generalizations. Ⅳ. The Korteweg-de vries equation as a Hamiltonian system, J. Math. Phys., 1971, 12(8), 1548–1551. doi: 10.1063/1.1665772

    CrossRef Google Scholar

    [8] J. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math., 1984, 70, 235–258. doi: 10.1002/sapm1984703235

    CrossRef Google Scholar

    [9] G. Gottwald, R. Grimshaw and B. Malomed, Parametric envelope solitons in coupled Korteweg-de Vries equations, Phys. Lett. A., 1997, 227(1–2), 47–54.

    Google Scholar

    [10] B. Guo and S. Tan, Global smooth solution for a coupled nonlinear wave equations, Math. Methods Appl. Sci., 1991, 14(6), 419–425. doi: 10.1002/mma.1670140606

    CrossRef Google Scholar

    [11] B. Guo and L. Wang, Periodic solutions for nonlinear systems of Schrödinger equations and KdV equation, J. East China Norm. Univ. Natur. Sci. Ed., 1986, 4, 42–48.

    Google Scholar

    [12] S. Hao, B. Liu and G. Li, The numerical solution and simulation for KdV equation, Journal of naval aeronautical and astronautical university., 2009, 24(5), 597–600.

    Google Scholar

    [13] P. He, Global solutions for a coupled KdV system, J. Partial Differ. Equ., 1989, 2(1), 16–30.

    Google Scholar

    [14] R. Hirota and J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett. A., 1981, 85, 407–408. doi: 10.1016/0375-9601(81)90423-0

    CrossRef Google Scholar

    [15] H. Hu, B. Tong and S. Lou, Nonsingular positon and complexiton solutions for the coupled KdV system, Phys Lett. A., 351(6), 2006, 403–412. doi: 10.1016/j.physleta.2005.11.047

    CrossRef Google Scholar

    [16] S. Li, M. Chen, X. Yang and B. Zhang, Non-homogeneous boundary value problem for the coupled KdV-KdV system posed on a quarter plane, arXiv preprint, 2022. arXiv: 2208.07053.

    Google Scholar

    [17] J. Mao, J. Yang and T. Dong, New solitary wave-like solution and analytic solution of generalized KdV equation with variable coefficients, J. Lanzhou. Univ. Tech., 2007, 33(33), 148–149.

    Google Scholar

    [18] X. Shi, The almost periodic solution of a KdV-Burgers equation, Chinese J. Engrg. Math., 2014, 31(1), 67–74.

    Google Scholar

    [19] Y. Shi, J. Zhang, H. Yang, et al, The single solitary wave with double peaks of the coupled KdV equation and its stability, Acta Phys. Sin., 2011, 60(2), 020401–1.

    Google Scholar

    [20] M. Wang, Y. Zhou and Z. Li, Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A., 1996, 216(1–5), 67–75.

    Google Scholar

    [21] X. Xiang, C. Fan and W. Wei, Semibounded nonliear evolution equations with application to the KdV equations, Acta Math. Appl. Sin. Engl. Ser., 2003, 19(2), 267–280.

    Google Scholar

    [22] L. Yang, The initial-boundary value problem of a generalized KdV equation, J. Cent. South Inst. Min. Metall., 1988, 19(1), 85–93.

    Google Scholar

    [23] X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb{R}$, arXiv preprint, 2020. arXiv: 1812.08261.

    Google Scholar

    [24] X. Yang and B. Zhang, Well-posedness and critical index set of the Cauchy problem for the coupled KdV-KdV systems on $\mathbb{T}$, Discrete Contin. Dyn. Syst., 2022, 42(11), 5167.

    $\mathbb{T}$" target="_blank">Google Scholar

    [25] N. Zabusky and M. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, 15(6), 240–243.

    Google Scholar

    [26] Z. Zhu, Painlevé property, Bäcklund transformation, Lax pairs and soliton-like solutions for a variable coefficient KP equation, Phys. Lett. A., 1993, 182(2/3), 277–281.

    Google Scholar

    [27] Z. Zhu, Lax pairs, Bäcklund transformation, solitary wave solution and infinite conservation laws of the general KP equation and MKP equation with variable coefficients, Phys. Lett. A., 1993, 180(6), 409–412.

    Google Scholar

Article Metrics

Article views(1534) PDF downloads(262) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint