Citation: | Boling Guo, Qi Guo. THE SMOOTH SOLUTIONS OF A CLASS OF COUPLED KDV EQUATIONS[J]. Journal of Applied Analysis & Computation, 2024, 14(5): 2505-2522. doi: 10.11948/20220477 |
This paper is devoted to the study of the periodic initial boundary value problem and Cauchy problem for the coupled KdV equations. By the Galerkin method and sequential approximation, we get a series of a priori estimates and establish the existence of classical local solution to the periodic problem for the system. Then we obtain the existence and uniqueness of global smooth solution when the coefficients of the system satisfy certain conditions by energy method, conserved quantities and nonconservative quantity $ I(u, v) $.
[1] | E. Basako$\check{g}$lu and T. B. G$\ddot{u}$rel, Smoothing and global attractors for the Hirota-Satsuma system on the torus, arXiv preprint, 2022. arXiv: 2204.12480. |
[2] | X. Cheng, J. Li and J. Xue, Coupled KdV equation: Similarity reduction and analytical solution, Acta Phys. Sin., 2011, 60(11). |
[3] | B. Deconinck, N. Nguyen and B. Segal, The interaction of long and short waves in dispersive media, J. Phys. A., 2016, 49(41). |
[4] | L. Ding and G. Wei, Periodic solution of a class of coupled KdV equation, J. Univ. Shanghai. Sci. Technol., 2013, 35(6), 516–522. |
[5] | R. Dodd, J. Eilbeck, et al, Solitons and Nonlinear Wave Equations, Academic Press, 1982. |
[6] | M. Funakoshi and M. Oikawa, The resonant interaction between a long internal gravity wave and a surface gravity wave packet, J. Phys. Soc. Jpn., 1983, 52(6), 1982–1995. doi: 10.1143/JPSJ.52.1982 |
[7] | C. Gardner, Korteweg-de vries equation and generalizations. Ⅳ. The Korteweg-de vries equation as a Hamiltonian system, J. Math. Phys., 1971, 12(8), 1548–1551. doi: 10.1063/1.1665772 |
[8] | J. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves, Stud. Appl. Math., 1984, 70, 235–258. doi: 10.1002/sapm1984703235 |
[9] | G. Gottwald, R. Grimshaw and B. Malomed, Parametric envelope solitons in coupled Korteweg-de Vries equations, Phys. Lett. A., 1997, 227(1–2), 47–54. |
[10] | B. Guo and S. Tan, Global smooth solution for a coupled nonlinear wave equations, Math. Methods Appl. Sci., 1991, 14(6), 419–425. doi: 10.1002/mma.1670140606 |
[11] | B. Guo and L. Wang, Periodic solutions for nonlinear systems of Schrödinger equations and KdV equation, J. East China Norm. Univ. Natur. Sci. Ed., 1986, 4, 42–48. |
[12] | S. Hao, B. Liu and G. Li, The numerical solution and simulation for KdV equation, Journal of naval aeronautical and astronautical university., 2009, 24(5), 597–600. |
[13] | P. He, Global solutions for a coupled KdV system, J. Partial Differ. Equ., 1989, 2(1), 16–30. |
[14] | R. Hirota and J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett. A., 1981, 85, 407–408. doi: 10.1016/0375-9601(81)90423-0 |
[15] | H. Hu, B. Tong and S. Lou, Nonsingular positon and complexiton solutions for the coupled KdV system, Phys Lett. A., 351(6), 2006, 403–412. doi: 10.1016/j.physleta.2005.11.047 |
[16] | S. Li, M. Chen, X. Yang and B. Zhang, Non-homogeneous boundary value problem for the coupled KdV-KdV system posed on a quarter plane, arXiv preprint, 2022. arXiv: 2208.07053. |
[17] | J. Mao, J. Yang and T. Dong, New solitary wave-like solution and analytic solution of generalized KdV equation with variable coefficients, J. Lanzhou. Univ. Tech., 2007, 33(33), 148–149. |
[18] | X. Shi, The almost periodic solution of a KdV-Burgers equation, Chinese J. Engrg. Math., 2014, 31(1), 67–74. |
[19] | Y. Shi, J. Zhang, H. Yang, et al, The single solitary wave with double peaks of the coupled KdV equation and its stability, Acta Phys. Sin., 2011, 60(2), 020401–1. |
[20] | M. Wang, Y. Zhou and Z. Li, Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics, Phys. Lett. A., 1996, 216(1–5), 67–75. |
[21] | X. Xiang, C. Fan and W. Wei, Semibounded nonliear evolution equations with application to the KdV equations, Acta Math. Appl. Sin. Engl. Ser., 2003, 19(2), 267–280. |
[22] | L. Yang, The initial-boundary value problem of a generalized KdV equation, J. Cent. South Inst. Min. Metall., 1988, 19(1), 85–93. |
[23] | X. Yang and B. Zhang, Local well-posedness of the coupled KdV-KdV systems on $\mathbb{R}$, arXiv preprint, 2020. arXiv: 1812.08261. |
[24] | X. Yang and B. Zhang, Well-posedness and critical index set of the Cauchy problem for the coupled KdV-KdV systems on $\mathbb{T}$, Discrete Contin. Dyn. Syst., 2022, 42(11), 5167. |
[25] | N. Zabusky and M. Kruskal, Interaction of "solitons" in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 1965, 15(6), 240–243. |
[26] | Z. Zhu, Painlevé property, Bäcklund transformation, Lax pairs and soliton-like solutions for a variable coefficient KP equation, Phys. Lett. A., 1993, 182(2/3), 277–281. |
[27] | Z. Zhu, Lax pairs, Bäcklund transformation, solitary wave solution and infinite conservation laws of the general KP equation and MKP equation with variable coefficients, Phys. Lett. A., 1993, 180(6), 409–412. |