2024 Volume 14 Issue 2
Article Contents

You Zhou, Beibei Zhang, Zhi Ling. DYNAMICAL BEHAVIOR OF THE FECAL-ORAL TRANSMISSION DISEASES MODEL ON A T-PERIODIC EVOLUTION DOMAIN[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 717-741. doi: 10.11948/20230025
Citation: You Zhou, Beibei Zhang, Zhi Ling. DYNAMICAL BEHAVIOR OF THE FECAL-ORAL TRANSMISSION DISEASES MODEL ON A T-PERIODIC EVOLUTION DOMAIN[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 717-741. doi: 10.11948/20230025

DYNAMICAL BEHAVIOR OF THE FECAL-ORAL TRANSMISSION DISEASES MODEL ON A T-PERIODIC EVOLUTION DOMAIN

  • We study the transmission dynamics of a fecal-oral diseases model on a $ T $-periodic evolution domain. We introduce the basic reproduction number $ R_0(\rho) $ as a threshold by some operator semigroup theory and give the relationship between it and that of the fixed domain, where $ \rho(t) $ is the domain evolution rate. By means of upper and lower solutions method, we investigate the existence, uniqueness and attractivity of endemic and disease-free equilibria respectively. Under certain conditions, there exists a unique global asymptotically stable positive periodic solution if $ R_0(\rho)>1 $. When $ R_0(\rho) \leq 1 $, the model possesses only zero solutions and is globally asymptotically stable. The final numerical simulations further verify our conclusions and illustrate the effect of the evolution rate. Based on the index $ \overline{\rho^{-2}} := \frac{1}{T}\int_{0}^{T}\frac{1}{\rho(t)^2}\mbox{d}t $, compared with the model on a fixed domain, we show that the transmission risk of the diseases increases if the index is lower than 1 and the risk decreases if the index is equal or greater than 1.

    MSC: 35K57, 35R37, 92D25
  • 加载中
  • [1] D. J. Acheson, Elementary Fluid Dynamics, Clarendon Press, Oxford, New York, 1990.

    Google Scholar

    [2] L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 2008, 21(1), 1–20. DOI: 10.3934/dcds.2008.21.1.

    CrossRef Google Scholar

    [3] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 1976, 18(4), 620–709. DOI: 10.1137/1018114.

    CrossRef Google Scholar

    [4] I. Antón and J. López-Gómez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues (From the book World Congress of Nonlinear Analysts '92), de Gruyter, Berlin, 1996, 323–334. DOI: 10.1515/9783110883237.323.

    Google Scholar

    [5] M. J. Baines, Moving Finite Elements, Monographs on Numerical Analysis, Clarendon Press, Oxford, New York, 1994.

    Google Scholar

    [6] D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir, Histoire de l'Acad. Roy. Sci. Avec Mém. des Math. et Phys. and Mém., Paris, 1760, 1–45.

    Google Scholar

    [7] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, UK, 2003. DOI: 10.1002/0470871296.

    CrossRef Google Scholar

    [8] V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 1981, 13(2), 173–184. DOI: 10.1007/BF00275212.

    CrossRef Google Scholar

    [9] X. J. Chen, X. H. Zhao and Y. Chen, Influence of El Niño/La Niña on the western winter–spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean, ICES J. Mar. Sci., 2007, 64(6), 1152–1160. DOI: 10.1093/icesjms/fsm103.

    CrossRef Google Scholar

    [10] E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bull. Math. Biol., 2002, 64(4), 747–769. DOI: 10.1006/bulm.2002.0295.

    CrossRef Google Scholar

    [11] Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 2014, 19(10), 3105–3132. DOI: 10.3934/dcdsb.2014.19.3105.

    CrossRef Google Scholar

    [12] Y. H. Du, M. X. Wang and M. L. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 2017, 107(3), 253–287. DOI: 10.1016/j.matpur.2016.06.005.

    CrossRef Google Scholar

    [13] F. S. Garduño, A. L. Krause, J. A. Castillo, et al., Turing-Hopf patterns on growing domains: The torus and the sphere, J. Theoret. Biol., 2019, 481, 136–150. DOI: 10.1016/j.jtbi.2018.09.028.

    CrossRef Google Scholar

    [14] J. K. Hale, Ordinary Differential Equations (2nd edition), Robert E. Krieger Publishing Company, Florida, 1980.

    Google Scholar

    [15] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 2000, 42(4), 599–653. DOI: 10.1137/S0036144500371907.

    CrossRef Google Scholar

    [16] R. Y. Hu, W. T. Li and W. B. Xu, Propagation phenomena for Man-Environment epidemic model with nonlocal dispersals, J. Nonlinear Sci., 2022, 32(5), 67. DOI: 10.1007/s00332-022-09825-6.

    CrossRef Google Scholar

    [17] C. X. Huang and Y. X. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differential Equations, 2021, 271, 186–215. DOI: 10.1016/j.jde.2020.08.008.

    CrossRef Google Scholar

    [18] H. M. Huang, S. Y. Liu and M. X. Wang, A free boundary problem of the diffusive competition model with different habitats, J. Dynam. Differential Equations, 2022, 34(3), 2531–2548. DOI: 10.1007/s10884-021-10102-5.

    CrossRef Google Scholar

    [19] D. H. Jiang and Z. C. Wang, The diffusive logistic equation on periodically evolving domains, J. Math. Anal. Appl., 2018, 458(1), 93–111. DOI: 10.1016/j.jmaa.2017.08.059.

    CrossRef Google Scholar

    [20] N. I. Kavallaris, R. Barreira and A. Madzvamuse, Dynamics of shadow system of a singular Gierer-Meinhardt system on an evolving domain, J. Nonlinear Sci., 2021, 31(1), 5. DOI: 10.1007/s00332-020-09664-3.

    CrossRef Google Scholar

    [21] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 1927, 115(772), 700–721. DOI: 10.1098/rspa.1927.0118.

    CrossRef Google Scholar

    [22] S. Lei, X. P. Zhang, R. F. Li, et al., Analysis the changes of annual for Poyang Lake wetland vegetation based on MODIS monitoring, Procedia Environ. Sci., 2011, 10(Part B), 1841–1846. DOI: 10.1016/j.proenv.2011.09.288.

    CrossRef Google Scholar

    [23] M. Y. Li, An introduction to mathematical modeling of infectious diseases, Springer, Cham, Switzerland, 2018. DOI: 10.1007/978-3-319-72122-4.

    CrossRef Google Scholar

    [24] W. T. Li, W. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst., 2017, 37(5), 2483–2512. DOI: 10.3934/dcds.2017107.

    CrossRef Google Scholar

    [25] Y. J. Ma, M. X. Liu, Q. Hou and J. Q. Zhao, Modelling seasonal HFMD with the recessive infection in Shandong, China, Math. Biosci. Eng., 2013, 10(4), 1159–1171. DOI: 10.3934/mbe.2013.10.1159.

    CrossRef Google Scholar

    [26] A. Madzvamuse, Stability analysis of reaction-diffusion systems with constant coefficients on growing domains, Int. J. Dyn. Syst. Differ. Equ., 2008, 1(4), 250–262. DOI: 10.1504/IJDSDE.2008.023002.

    CrossRef Google Scholar

    [27] M. C. Montano and B. Lisena, Diffusive Lotka-Volterra competition models on periodically evolving domains, J. Math. Anal. Appl., 2020, 484(1), 123675. DOI: 10.1016/j.jmaa.2019.123675.

    CrossRef Google Scholar

    [28] T. H. Nguyen and H. H. Vo, Dynamics for a two-phase free boundary system in an epidemiological model with couple nonlocal dispersals, J. Differential Equations, 2022, 335, 398–463. DOI: 10.1016/j.jde.2022.06.029.

    CrossRef Google Scholar

    [29] C. V. Pao, Periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 2000, 251(1), 251–263. DOI: 10.1006/jmaa.2000.7045.

    CrossRef Google Scholar

    [30] C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 2005, 304(2), 423–450. DOI: 10.1016/j.jmaa.2004.09.014.

    CrossRef Google Scholar

    [31] A. J. Phillips, L. Ciannelli, R. D. Brodeur, et al., Spatio-temporal associations of albacore CPUEs in the Northeastern Pacific with regional SST and climate environmental variables, ICES J. Mar. Sci., 2014, 71(7), 1717–1727. DOI: 10.1093/icesjms/fst238.

    CrossRef Google Scholar

    [32] R. Rose, The Prevention of Malaria, John Murray, London, 1911.

    Google Scholar

    [33] L. Shi, H. Y. Zhao and D. Y. Wu, Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China, Math. Biosci. Eng., 2019, 16(1), 474–500. DOI: 10.3934/mbe.2019022.

    CrossRef Google Scholar

    [34] Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 2011, 378(2), 649–656. DOI: 10.1016/j.jmaa.2011.01.057.

    CrossRef Google Scholar

    [35] X. S. Tang and P. C. Ouyang, Spatiotemporal dynamics in a diffusive bacterial and viral diseases propagation model with chemotaxis, Qual. Theory Dyn. Syst., 2020, 19(3), 91. DOI: 10.1007/s12346-020-00422-0.

    CrossRef Google Scholar

    [36] Y. C. Tong and Z. G. Lin, Spatial diffusion and periodic evolving of domain in an SIS epidemic model, Nonlinear Anal. Real World Appl., 2021, 61, 103343. DOI: 10.1016/j.nonrwa.2021.103343.

    CrossRef Google Scholar

    [37] S. L. Wu, G. S. Chen and C. H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 2018, 265(11), 5520–5574. DOI: 10.1016/j.jde.2018.06.012.

    CrossRef Google Scholar

    [38] H. Y. Xu, Z. G. Lin and C. A. Santos, Persistence, extinction and blowup in a generalized logistic model with impulses and regional evolution, J. Appl. Anal. Comput., 2022, 12(5), 1922–1944. DOI: 10.11948/20210393.

    CrossRef Google Scholar

    [39] W. B. Xu, W. T. Li and S. G. Ruan, Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals, Sci. China Math. , 2020, 63(11), 2177–2206. DOI: 10.1007/s11425-020-1740-1.

    CrossRef Google Scholar

    [40] B. B. Zhang, L. Zhang and Z. Ling, The asymptotic behavior of bacterial and viral diseases model on a growing domain, Appl. Anal., 2023, 102(6), 1732–1751. DOI: 10.1080/00036811.2021.1999421.

    CrossRef Google Scholar

    [41] L. Zhang, W. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 2016, 28(1), 189–224. DOI: 10.1007/s10884-014-9416-8.

    CrossRef Google Scholar

    [42] X. Q. Zhao, Dynamical Systems in Population Biology (2nd edition), Springer, Cham, 2017. DOI: 10.1007/978-3-319-56433-3.

    CrossRef Google Scholar

    [43] M. Zhu, Z. G. Lin and L. Zhang, The asymptotic profile of a dengue model on a growing domain driven by climate change, Appl. Math. Model., 2020, 83, 470–486. DOI: 10.1016/j.apm.2020.03.006.

    CrossRef Google Scholar

    [44] M. Zhu, Y. Xu and J. D. Cao, The asymptotic profile of a dengue fever model on a periodically evolving domain, Appl. Math. Comput., 2019, 362, 124531. DOI: 10.1016/j.amc.2019.06.045.

    CrossRef Google Scholar

Figures(2)

Article Metrics

Article views(1524) PDF downloads(370) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint