Citation: | You Zhou, Beibei Zhang, Zhi Ling. DYNAMICAL BEHAVIOR OF THE FECAL-ORAL TRANSMISSION DISEASES MODEL ON A T-PERIODIC EVOLUTION DOMAIN[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 717-741. doi: 10.11948/20230025 |
We study the transmission dynamics of a fecal-oral diseases model on a $ T $-periodic evolution domain. We introduce the basic reproduction number $ R_0(\rho) $ as a threshold by some operator semigroup theory and give the relationship between it and that of the fixed domain, where $ \rho(t) $ is the domain evolution rate. By means of upper and lower solutions method, we investigate the existence, uniqueness and attractivity of endemic and disease-free equilibria respectively. Under certain conditions, there exists a unique global asymptotically stable positive periodic solution if $ R_0(\rho)>1 $. When $ R_0(\rho) \leq 1 $, the model possesses only zero solutions and is globally asymptotically stable. The final numerical simulations further verify our conclusions and illustrate the effect of the evolution rate. Based on the index $ \overline{\rho^{-2}} := \frac{1}{T}\int_{0}^{T}\frac{1}{\rho(t)^2}\mbox{d}t $, compared with the model on a fixed domain, we show that the transmission risk of the diseases increases if the index is lower than 1 and the risk decreases if the index is equal or greater than 1.
[1] | D. J. Acheson, Elementary Fluid Dynamics, Clarendon Press, Oxford, New York, 1990. |
[2] | L. J. S. Allen, B. M. Bolker, Y. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst., 2008, 21(1), 1–20. DOI: 10.3934/dcds.2008.21.1. |
[3] | H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered banach spaces, SIAM Rev., 1976, 18(4), 620–709. DOI: 10.1137/1018114. |
[4] |
I. Antón and J. López-Gómez, The strong maximum principle for cooperative periodic-parabolic systems and the existence of principal eigenvalues (From the book World Congress of Nonlinear Analysts '92), de Gruyter, Berlin, 1996, 323–334. DOI: |
[5] | M. J. Baines, Moving Finite Elements, Monographs on Numerical Analysis, Clarendon Press, Oxford, New York, 1994. |
[6] | D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l'inoculation pour la prévenir, Histoire de l'Acad. Roy. Sci. Avec Mém. des Math. et Phys. and Mém., Paris, 1760, 1–45. |
[7] | R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, John Wiley & Sons, Ltd., Chichester, UK, 2003. DOI: 10.1002/0470871296. |
[8] | V. Capasso and L. Maddalena, Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases, J. Math. Biol., 1981, 13(2), 173–184. DOI: 10.1007/BF00275212. |
[9] | X. J. Chen, X. H. Zhao and Y. Chen, Influence of El Niño/La Niña on the western winter–spring cohort of neon flying squid (Ommastrephes bartramii) in the northwestern Pacific Ocean, ICES J. Mar. Sci., 2007, 64(6), 1152–1160. DOI: 10.1093/icesjms/fsm103. |
[10] | E. J. Crampin, W. W. Hackborn and P. K. Maini, Pattern formation in reaction-diffusion models with nonuniform domain growth, Bull. Math. Biol., 2002, 64(4), 747–769. DOI: 10.1006/bulm.2002.0295. |
[11] | Y. H. Du and Z. G. Lin, The diffusive competition model with a free boundary: invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B, 2014, 19(10), 3105–3132. DOI: 10.3934/dcdsb.2014.19.3105. |
[12] | Y. H. Du, M. X. Wang and M. L. Zhou, Semi-wave and spreading speed for the diffusive competition model with a free boundary, J. Math. Pures Appl., 2017, 107(3), 253–287. DOI: 10.1016/j.matpur.2016.06.005. |
[13] | F. S. Garduño, A. L. Krause, J. A. Castillo, et al., Turing-Hopf patterns on growing domains: The torus and the sphere, J. Theoret. Biol., 2019, 481, 136–150. DOI: 10.1016/j.jtbi.2018.09.028. |
[14] | J. K. Hale, Ordinary Differential Equations (2nd edition), Robert E. Krieger Publishing Company, Florida, 1980. |
[15] | H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 2000, 42(4), 599–653. DOI: 10.1137/S0036144500371907. |
[16] | R. Y. Hu, W. T. Li and W. B. Xu, Propagation phenomena for Man-Environment epidemic model with nonlocal dispersals, J. Nonlinear Sci., 2022, 32(5), 67. DOI: 10.1007/s00332-022-09825-6. |
[17] | C. X. Huang and Y. X. Tan, Global behavior of a reaction-diffusion model with time delay and Dirichlet condition, J. Differential Equations, 2021, 271, 186–215. DOI: 10.1016/j.jde.2020.08.008. |
[18] | H. M. Huang, S. Y. Liu and M. X. Wang, A free boundary problem of the diffusive competition model with different habitats, J. Dynam. Differential Equations, 2022, 34(3), 2531–2548. DOI: 10.1007/s10884-021-10102-5. |
[19] | D. H. Jiang and Z. C. Wang, The diffusive logistic equation on periodically evolving domains, J. Math. Anal. Appl., 2018, 458(1), 93–111. DOI: 10.1016/j.jmaa.2017.08.059. |
[20] | N. I. Kavallaris, R. Barreira and A. Madzvamuse, Dynamics of shadow system of a singular Gierer-Meinhardt system on an evolving domain, J. Nonlinear Sci., 2021, 31(1), 5. DOI: 10.1007/s00332-020-09664-3. |
[21] | W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 1927, 115(772), 700–721. DOI: 10.1098/rspa.1927.0118. |
[22] | S. Lei, X. P. Zhang, R. F. Li, et al., Analysis the changes of annual for Poyang Lake wetland vegetation based on MODIS monitoring, Procedia Environ. Sci., 2011, 10(Part B), 1841–1846. DOI: 10.1016/j.proenv.2011.09.288. |
[23] | M. Y. Li, An introduction to mathematical modeling of infectious diseases, Springer, Cham, Switzerland, 2018. DOI: 10.1007/978-3-319-72122-4. |
[24] | W. T. Li, W. B. Xu and L. Zhang, Traveling waves and entire solutions for an epidemic model with asymmetric dispersal, Discrete Contin. Dyn. Syst., 2017, 37(5), 2483–2512. DOI: 10.3934/dcds.2017107. |
[25] | Y. J. Ma, M. X. Liu, Q. Hou and J. Q. Zhao, Modelling seasonal HFMD with the recessive infection in Shandong, China, Math. Biosci. Eng., 2013, 10(4), 1159–1171. DOI: 10.3934/mbe.2013.10.1159. |
[26] | A. Madzvamuse, Stability analysis of reaction-diffusion systems with constant coefficients on growing domains, Int. J. Dyn. Syst. Differ. Equ., 2008, 1(4), 250–262. DOI: 10.1504/IJDSDE.2008.023002. |
[27] | M. C. Montano and B. Lisena, Diffusive Lotka-Volterra competition models on periodically evolving domains, J. Math. Anal. Appl., 2020, 484(1), 123675. DOI: 10.1016/j.jmaa.2019.123675. |
[28] | T. H. Nguyen and H. H. Vo, Dynamics for a two-phase free boundary system in an epidemiological model with couple nonlocal dispersals, J. Differential Equations, 2022, 335, 398–463. DOI: 10.1016/j.jde.2022.06.029. |
[29] | C. V. Pao, Periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 2000, 251(1), 251–263. DOI: 10.1006/jmaa.2000.7045. |
[30] | C. V. Pao, Stability and attractivity of periodic solutions of parabolic systems with time delays, J. Math. Anal. Appl., 2005, 304(2), 423–450. DOI: 10.1016/j.jmaa.2004.09.014. |
[31] | A. J. Phillips, L. Ciannelli, R. D. Brodeur, et al., Spatio-temporal associations of albacore CPUEs in the Northeastern Pacific with regional SST and climate environmental variables, ICES J. Mar. Sci., 2014, 71(7), 1717–1727. DOI: 10.1093/icesjms/fst238. |
[32] | R. Rose, The Prevention of Malaria, John Murray, London, 1911. |
[33] | L. Shi, H. Y. Zhao and D. Y. Wu, Modelling and analysis of HFMD with the effects of vaccination, contaminated environments and quarantine in mainland China, Math. Biosci. Eng., 2019, 16(1), 474–500. DOI: 10.3934/mbe.2019022. |
[34] | Q. L. Tang and Z. G. Lin, The asymptotic analysis of an insect dispersal model on a growing domain, J. Math. Anal. Appl., 2011, 378(2), 649–656. DOI: 10.1016/j.jmaa.2011.01.057. |
[35] | X. S. Tang and P. C. Ouyang, Spatiotemporal dynamics in a diffusive bacterial and viral diseases propagation model with chemotaxis, Qual. Theory Dyn. Syst., 2020, 19(3), 91. DOI: 10.1007/s12346-020-00422-0. |
[36] | Y. C. Tong and Z. G. Lin, Spatial diffusion and periodic evolving of domain in an SIS epidemic model, Nonlinear Anal. Real World Appl., 2021, 61, 103343. DOI: 10.1016/j.nonrwa.2021.103343. |
[37] | S. L. Wu, G. S. Chen and C. H. Hsu, Entire solutions originating from multiple fronts of an epidemic model with nonlocal dispersal and bistable nonlinearity, J. Differential Equations, 2018, 265(11), 5520–5574. DOI: 10.1016/j.jde.2018.06.012. |
[38] | H. Y. Xu, Z. G. Lin and C. A. Santos, Persistence, extinction and blowup in a generalized logistic model with impulses and regional evolution, J. Appl. Anal. Comput., 2022, 12(5), 1922–1944. DOI: 10.11948/20210393. |
[39] | W. B. Xu, W. T. Li and S. G. Ruan, Spatial propagation in an epidemic model with nonlocal diffusion: The influences of initial data and dispersals, Sci. China Math. , 2020, 63(11), 2177–2206. DOI: 10.1007/s11425-020-1740-1. |
[40] | B. B. Zhang, L. Zhang and Z. Ling, The asymptotic behavior of bacterial and viral diseases model on a growing domain, Appl. Anal., 2023, 102(6), 1732–1751. DOI: 10.1080/00036811.2021.1999421. |
[41] | L. Zhang, W. T. Li and S. L. Wu, Multi-type entire solutions in a nonlocal dispersal epidemic model, J. Dynam. Differential Equations, 2016, 28(1), 189–224. DOI: 10.1007/s10884-014-9416-8. |
[42] | X. Q. Zhao, Dynamical Systems in Population Biology (2nd edition), Springer, Cham, 2017. DOI: 10.1007/978-3-319-56433-3. |
[43] | M. Zhu, Z. G. Lin and L. Zhang, The asymptotic profile of a dengue model on a growing domain driven by climate change, Appl. Math. Model., 2020, 83, 470–486. DOI: 10.1016/j.apm.2020.03.006. |
[44] | M. Zhu, Y. Xu and J. D. Cao, The asymptotic profile of a dengue fever model on a periodically evolving domain, Appl. Math. Comput., 2019, 362, 124531. DOI: 10.1016/j.amc.2019.06.045. |