2024 Volume 14 Issue 1
Article Contents

Lixia Wang, Chunlian Xiong, Dong Zhang. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 84-105. doi: 10.11948/20230034
Citation: Lixia Wang, Chunlian Xiong, Dong Zhang. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 84-105. doi: 10.11948/20230034

MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY

  • In this paper, we study the following nonhomogeneous Klein-Gordon equation with Born-Infeld theory

    $ \begin{align*} \begin{cases} - \Delta u +\lambda V(x)u-K(x)(2\omega+\phi)\phi u =f(x,u)+h(x), &x\in \mathbb{R}^3,\\ \Delta \phi +\beta\Delta_4\phi=4\pi K(x)(\omega+\phi)u^2, \quad & x\in \mathbb{R}^3, \\ \end{cases} \end{align*} $

    where $ \omega>0 $ is a constant, $ \lambda>0 $ is a parameter and $ \triangle_4\phi=div(|\nabla\phi|^2\nabla\phi) $. Under some suitable assumptions on $ V,K,f $ and $ h $, the existence of multiple solutions is proved by using the Linking theorem and the Ekeland's variational principle in critical point theory. Especially, the potential $ V $ is allowed to be sign-changing.

    MSC: 35B33, 35J65, 35Q55
  • 加载中
  • [1] F. S. B. Albuquerque, S. J. Chen and L. Li, Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in $\mathbb{R}^2$, Electronic Journal of Qualitative Theory of Differential Equations, 2020, 12, 1-18.

    $\mathbb{R}^2$" target="_blank">Google Scholar

    [2] C. O. Alves, M. A. S. Souto and S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377, 584-592. doi: 10.1016/j.jmaa.2010.11.031

    CrossRef Google Scholar

    [3] T. Bartsch and Z. -Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on $\mathbb{R}^N$, Comm. Partial Differ. Equa., 1995, 20, 1725-1741. doi: 10.1080/03605309508821149

    CrossRef $\mathbb{R}^N$" target="_blank">Google Scholar

    [4] V. Benci, D. Fortunato, A. Masiello and L. Pisani, Solitons and the electromagnetic field, Math. Z., 1999, 232(1), 73-102. doi: 10.1007/PL00004759

    CrossRef Google Scholar

    [5] M. Born, Modified field equations with a finite radius of the electron, Nature, 1933, 132, 282.

    Google Scholar

    [6] M. Born, On the quantum theory of the electromagnetic field, Proceedings of the Royal Society of London Series A, 1934, 143, 410-437.

    Google Scholar

    [7] M. Born and L. Infeld, Foundations of the new field theory, Nature, 1934, 144(852), 425-451.

    Google Scholar

    [8] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 1983, 36, 437-477. doi: 10.1002/cpa.3160360405

    CrossRef Google Scholar

    [9] M. Carmeli, Field theory on $R\times S$ 3 topology Ⅰ: The Klein-Gordon and Schrödinger equations, Found Phys., 1985, 15, 175-184. doi: 10.1007/BF00735289

    CrossRef $R\times S$ 3 topology Ⅰ: The Klein-Gordon and Schrödinger equations" target="_blank">Google Scholar

    [10] S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on $\mathbb{R}^3$, J. Math. Anal. Appl., 2013, 400, 517-524. doi: 10.1016/j.jmaa.2012.10.057

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [11] S. J. Chen and S. Z. Song, The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on $\mathbb{R}^3$, Nonlinear Analysis Real World Applications, 2017, 38, 78-95. doi: 10.1016/j.nonrwa.2017.04.008

    CrossRef $\mathbb{R}^3$" target="_blank">Google Scholar

    [12] P. D'Avenia and L. Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Electronic Journal of Differential Equations, 2002, 26, 1-13.

    Google Scholar

    [13] Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 2007, 29, 397-419. doi: 10.1007/s00526-006-0071-8

    CrossRef Google Scholar

    [14] B. Felsager, Geometry, Particles and Fields, Odense University Press, Odense, Edited with the assistance of Carsten Claussen, 1981.

    Google Scholar

    [15] D. Fortunato, L. Orsani and L. Pisina, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 2002, 11, 5698-5706.

    Google Scholar

    [16] C. M. He, L. Li, S. J. Chen and D. O'Regan, Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents, Analysis and Mathematical Physics, 2022, 12, 48. doi: 10.1007/s13324-022-00661-1

    CrossRef Google Scholar

    [17] D. Mugnai, Coupled Klein-Gorndon and Born-Infeld type equations: looking for solitary waves, Proceedings of the Royal Society of London A Mathematical Physical and Engineering Sciences, 2004, 460, 1519-1527. doi: 10.1098/rspa.2003.1267

    CrossRef Google Scholar

    [18] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986.

    Google Scholar

    [19] K. M. Teng, Existence and multiple of the solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory on boundary domain, Differential Equations and Applications, 2012, 4(3), 445-457.

    Google Scholar

    [20] K. M. Teng and K. Zhang, Existence of solitary wave solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical Sobolev exponent, Nonlinear Anal., 2011, 74(12), 4241-4251. doi: 10.1016/j.na.2011.04.002

    CrossRef Google Scholar

    [21] F. Z. Wang, Solitary waves for the coupled nonlinear Klein-Gordon and Born-Infeld type equations, Electronic Journal of Differential Equations, 2012, 82, 1-12.

    Google Scholar

    [22] L. X. Wang, C. L. Xiong and P. P. Zhao, Two solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on $\mathbb{R}^3$, Electronic Journal of Differential Equations, 2022, 1-11.

    $\mathbb{R}^3$" target="_blank">Google Scholar

    [23] L. X. Wen, X. H. Tang and S. T. Chen, Infinitely many solutions and least energy solutions for Klein-Gordon equation coupled with Born-Infeld theory, Complex Variables and Elliptic Equations, 2019, 1572124.

    Google Scholar

    [24] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkh$\ddot{a}$user Boston Inc., Boston, MA, 1996.

    Google Scholar

    [25] Y. Yang, Classical solutions in the Born-Infeld theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 456, 615-640.

    Google Scholar

    [26] Y. W. Ye and C. L. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 2015, 53, 383-411. doi: 10.1007/s00526-014-0753-6

    CrossRef Google Scholar

    [27] Y. Yu, Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory, Ann. Inst. H. Poincare Anal. Non Lineaire, 2010, 27(1), 351-376. doi: 10.1016/j.anihpc.2009.11.001

    CrossRef Google Scholar

    [28] J. J. Zhang and W. M. Zou, Solutions concentrating around the saddle points of the potential for critical Schrödinger equations, Calc. Var. Partial Differ. Equ., 2015, 54, 4119-4142. doi: 10.1007/s00526-015-0933-z

    CrossRef Google Scholar

    [29] Z. H. Zhang and J. L. Liu, Existence and multiplicity of sign-changing solutions for Klein-Gordon equation coupled with Born-Infeld theory with subcritical exponent, Qualitative Theory of Dynamical Systems, 2023, 22, 7. doi: 10.1007/s12346-022-00709-4

    CrossRef Google Scholar

    [30] W. M. Zou and M. Schechter, Critical Point Theory and its Applications, Springer, New York, 2006.

    Google Scholar

Article Metrics

Article views(1253) PDF downloads(421) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint