Citation: | Lixia Wang, Chunlian Xiong, Dong Zhang. MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS KLEIN-GORDON EQUATION WITH SIGN-CHANGING POTENTIAL COUPLED WITH BORN-INFELD THEORY[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 84-105. doi: 10.11948/20230034 |
In this paper, we study the following nonhomogeneous Klein-Gordon equation with Born-Infeld theory
$ \begin{align*} \begin{cases} - \Delta u +\lambda V(x)u-K(x)(2\omega+\phi)\phi u =f(x,u)+h(x), &x\in \mathbb{R}^3,\\ \Delta \phi +\beta\Delta_4\phi=4\pi K(x)(\omega+\phi)u^2, \quad & x\in \mathbb{R}^3, \\ \end{cases} \end{align*} $
where $ \omega>0 $ is a constant, $ \lambda>0 $ is a parameter and $ \triangle_4\phi=div(|\nabla\phi|^2\nabla\phi) $. Under some suitable assumptions on $ V,K,f $ and $ h $, the existence of multiple solutions is proved by using the Linking theorem and the Ekeland's variational principle in critical point theory. Especially, the potential $ V $ is allowed to be sign-changing.
[1] | F. S. B. Albuquerque, S. J. Chen and L. Li, Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in $\mathbb{R}^2$, Electronic Journal of Qualitative Theory of Differential Equations, 2020, 12, 1-18. |
[2] | C. O. Alves, M. A. S. Souto and S. H. M. Soares, Schrödinger-Poisson equations without Ambrosetti-Rabinowitz condition, J. Math. Anal. Appl., 2011, 377, 584-592. doi: 10.1016/j.jmaa.2010.11.031 |
[3] | T. Bartsch and Z. -Q. Wang, Existence and multiplicity results for some superlinear elliptic problem on $\mathbb{R}^N$, Comm. Partial Differ. Equa., 1995, 20, 1725-1741. doi: 10.1080/03605309508821149 |
[4] | V. Benci, D. Fortunato, A. Masiello and L. Pisani, Solitons and the electromagnetic field, Math. Z., 1999, 232(1), 73-102. doi: 10.1007/PL00004759 |
[5] | M. Born, Modified field equations with a finite radius of the electron, Nature, 1933, 132, 282. |
[6] | M. Born, On the quantum theory of the electromagnetic field, Proceedings of the Royal Society of London Series A, 1934, 143, 410-437. |
[7] | M. Born and L. Infeld, Foundations of the new field theory, Nature, 1934, 144(852), 425-451. |
[8] | H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 1983, 36, 437-477. doi: 10.1002/cpa.3160360405 |
[9] |
M. Carmeli, Field theory on $R\times S$ 3 topology Ⅰ: The Klein-Gordon and Schrödinger equations, Found Phys., 1985, 15, 175-184. doi: 10.1007/BF00735289
CrossRef $R\times S$ 3 topology Ⅰ: The Klein-Gordon and Schrödinger equations" target="_blank">Google Scholar |
[10] | S. J. Chen and L. Li, Multiple solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on $\mathbb{R}^3$, J. Math. Anal. Appl., 2013, 400, 517-524. doi: 10.1016/j.jmaa.2012.10.057 |
[11] | S. J. Chen and S. Z. Song, The existence of multiple solutions for the Klein-Gordon equation with concave and convex nonlinearities coupled with Born-Infeld theory on $\mathbb{R}^3$, Nonlinear Analysis Real World Applications, 2017, 38, 78-95. doi: 10.1016/j.nonrwa.2017.04.008 |
[12] | P. D'Avenia and L. Pisani, Nonlinear Klein-Gordon equations coupled with Born-Infeld type equations, Electronic Journal of Differential Equations, 2002, 26, 1-13. |
[13] | Y. H. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 2007, 29, 397-419. doi: 10.1007/s00526-006-0071-8 |
[14] | B. Felsager, Geometry, Particles and Fields, Odense University Press, Odense, Edited with the assistance of Carsten Claussen, 1981. |
[15] | D. Fortunato, L. Orsani and L. Pisina, Born-Infeld type equations for electrostatic fields, J. Math. Phys., 2002, 11, 5698-5706. |
[16] | C. M. He, L. Li, S. J. Chen and D. O'Regan, Ground state solution for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical exponents, Analysis and Mathematical Physics, 2022, 12, 48. doi: 10.1007/s13324-022-00661-1 |
[17] | D. Mugnai, Coupled Klein-Gorndon and Born-Infeld type equations: looking for solitary waves, Proceedings of the Royal Society of London A Mathematical Physical and Engineering Sciences, 2004, 460, 1519-1527. doi: 10.1098/rspa.2003.1267 |
[18] | P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, American Mathematical Society, Providence, 1986. |
[19] | K. M. Teng, Existence and multiple of the solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory on boundary domain, Differential Equations and Applications, 2012, 4(3), 445-457. |
[20] | K. M. Teng and K. Zhang, Existence of solitary wave solutions for the nonlinear Klein-Gordon equation coupled with Born-Infeld theory with critical Sobolev exponent, Nonlinear Anal., 2011, 74(12), 4241-4251. doi: 10.1016/j.na.2011.04.002 |
[21] | F. Z. Wang, Solitary waves for the coupled nonlinear Klein-Gordon and Born-Infeld type equations, Electronic Journal of Differential Equations, 2012, 82, 1-12. |
[22] | L. X. Wang, C. L. Xiong and P. P. Zhao, Two solutions for the nonhomogeneous Klein-Gordon equation coupled with Born-Infeld theory on $\mathbb{R}^3$, Electronic Journal of Differential Equations, 2022, 1-11. |
[23] | L. X. Wen, X. H. Tang and S. T. Chen, Infinitely many solutions and least energy solutions for Klein-Gordon equation coupled with Born-Infeld theory, Complex Variables and Elliptic Equations, 2019, 1572124. |
[24] | M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkh$\ddot{a}$user Boston Inc., Boston, MA, 1996. |
[25] | Y. Yang, Classical solutions in the Born-Infeld theory, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 456, 615-640. |
[26] | Y. W. Ye and C. L. Tang, Existence and multiplicity of solutions for Schrödinger-Poisson equations with sign-changing potential, Calc. Var. Partial Differ. Equ., 2015, 53, 383-411. doi: 10.1007/s00526-014-0753-6 |
[27] | Y. Yu, Solitary waves for nonlinear Klein-Gordon equations coupled with Born-Infeld theory, Ann. Inst. H. Poincare Anal. Non Lineaire, 2010, 27(1), 351-376. doi: 10.1016/j.anihpc.2009.11.001 |
[28] | J. J. Zhang and W. M. Zou, Solutions concentrating around the saddle points of the potential for critical Schrödinger equations, Calc. Var. Partial Differ. Equ., 2015, 54, 4119-4142. doi: 10.1007/s00526-015-0933-z |
[29] | Z. H. Zhang and J. L. Liu, Existence and multiplicity of sign-changing solutions for Klein-Gordon equation coupled with Born-Infeld theory with subcritical exponent, Qualitative Theory of Dynamical Systems, 2023, 22, 7. doi: 10.1007/s12346-022-00709-4 |
[30] | W. M. Zou and M. Schechter, Critical Point Theory and its Applications, Springer, New York, 2006. |