2023 Volume 13 Issue 5
Article Contents

Yinlai Jin, Dongmei Zhang, Ningning Wang, Deming Zhu. BIFURCATIONS OF TWISTED FINE HETEROCLINIC LOOP FOR HIGH-DIMENSIONAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2906-2921. doi: 10.11948/20230052
Citation: Yinlai Jin, Dongmei Zhang, Ningning Wang, Deming Zhu. BIFURCATIONS OF TWISTED FINE HETEROCLINIC LOOP FOR HIGH-DIMENSIONAL SYSTEMS[J]. Journal of Applied Analysis & Computation, 2023, 13(5): 2906-2921. doi: 10.11948/20230052

BIFURCATIONS OF TWISTED FINE HETEROCLINIC LOOP FOR HIGH-DIMENSIONAL SYSTEMS

  • Author Bio: Email: wangningningx1y2z34@126.com(N. Wang); Email: dmzhu@math.ecnu.edu.cn(D. Zhu)
  • Corresponding authors: Email: jinyinlai@lyu.edu.cn(Y. Jin);  Email: zhangdongmei@lyu.edu.cn(D. Zhang) 
  • Fund Project: The authors were supported by Natural Science Foundation of Shandong Province (ZR2018MA016, ZR2015AL005), National Natural Science Foundation of China (11902133, 12071198, 11601212) and the Applied Mathematics Enhancement Program of Linyi University
  • In the paper, under twisted conditions, we consider the bifurcation problem of the fine heteroclinic loop with two hyperbolic critical points for high-dimensional systems. By using the foundational solutions of the linear variational equation of the unperturbed system along the heteroclinic orbits as the local coordinate system in the small tubular neighborhood of the heteroclinic loop, we construct the Poincaré maps and obtain the bifurcation equations. Then, by considering the small nonnegative solutions of the bifurcation equations, we get the main results of the reservation of the heteroclinic orbits, the existence and existence regions, the coexistence and coexistence regions of the 1-homoclinic loop, 1-periodic orbit, 2-homoclinic loop and 2-periodic orbit. Moreover, the bifurcation surfaces and graphs are given.

    MSC: 34C23, 34C37, 37C29
  • 加载中
  • [1] V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations, Second Edition, Springer-Verlag, New York, 1983.

    Google Scholar

    [2] Y. Bai and X. Liu, Bifurcations of double homoclinic loops in reversible systems, International Journal of Bifurcation and Chaos, 2020, 30(16), 13. https://doi.org/10.1142/S0218127420502466. doi: 10.1142/S0218127420502466

    CrossRef Google Scholar

    [3] R. Benterki and J. Llibre, Periodic solutions of a class of Duffing differential equations, Journal of Nonlinear Modeling and Analysis, 2019, 1(2), 167–177.

    Google Scholar

    [4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.

    Google Scholar

    [5] B. Deng, Numerical method for homoclinic and heteroclinic orbits of neuron models, Journal of Nonlinear Modeling and Analysis, 2019, 1(1), 27–45.

    Google Scholar

    [6] G. Deng and D. Zhu, Codimension-3 bifurcations of a class of homoclinic loop with saddle-point, Nonlinear Analysis, 2008, 69(12), 3761–3773.

    Google Scholar

    [7] H. Dong, T. Zhang and X. Liu, Bifurcations of double heterodimensional cycles with three saddle points, Journal of Applied Analysis & Computation, 2022, 12(6), 2143–2162.

    Google Scholar

    [8] Y. Fu and J. Li. Bifurcations of travelling wave solutions in three modified Camassa-Holm equations, Journal of Applied Analysis & Computation, 2021, 11(2), 1051–1061.

    Google Scholar

    [9] F. Geng, D. Liu and D. Zhu, Bifurcations of generic heteroclinic loop accompanied by transcritical bifurcation, International Journal of Bifurcation and Chaos, 2008, 18(4), 1069–1083. doi: 10.1142/S0218127408020847

    CrossRef Google Scholar

    [10] F. Geng, X. Lin and X. Liu, Chaotic traveling wave solutions in coupled chua's circuits, Journal of Dynamics and Differential Equations, 2019, 31, 1373–1396. doi: 10.1007/s10884-017-9631-1

    CrossRef Google Scholar

    [11] M. Han and D. Zhu, Bifurcation Theory of Differential Equations, Coal Industry Press, Beijing, 1994.

    Google Scholar

    [12] Q. Jia, W. Zhang, Q. Lu and X. Li, Bifurcations of double homoclinic loops with inclination flip and nonresonant eigenvalues, Journal of Nonlinear Modeling and Analysis, 2020, 2(1), 25–44.

    Google Scholar

    [13] Y. Jin and D. Zhu, Degenerated homoclinic bifurcations with higher dimensions, Chinese Annals of Mathematics, Series B, 2000, 21(2), 201–210. doi: 10.1142/S0252959900000224

    CrossRef Google Scholar

    [14] Y. Jin and D. Zhu, Bifurcations of rough heteroclinic loops with three saddles points, Acta Mathematica Sinica, English Series, 2002, 18(1), 199–208. doi: 10.1007/s101140100139

    CrossRef Google Scholar

    [15] Y. Jin and D. Zhu, Bifurcations of rough heteroclinic loop with two saddle points, Science in China, Series A, 2003, 46(4), 459–468. doi: 10.1007/BF02884018

    CrossRef Google Scholar

    [16] Y. Jin, D. Zhu and Q. Zheng, Bifurcations of rough 3-point-loop with higher dimensions, Chinese Annals of Mathematics, Series B, 2003, 24(1), 85–96. doi: 10.1142/S0252959903000098

    CrossRef Google Scholar

    [17] Y. Jin and D. Zhu, Twisted bifurcations and stability of homoclinic loop with higher dimensions, Applied Mathematics and Mechanics, 2004, 25(10), 1176–1183. doi: 10.1007/BF02439870

    CrossRef Google Scholar

    [18] Y. Jin and D. Zhu, Bifurcations of fine 3-point-loop in higher dimensional space, Acta Mathematica Sinica, English Series, 2005, 21(1), 39–52. doi: 10.1007/s10114-004-0400-9

    CrossRef Google Scholar

    [19] Y. Jin, F. Li and H. Xu, Bifurcations and stability of non-degenerated homoclinic loops for higher dimensional systems, Computational and Mathematical Methods in Medicine, 2013. http://dx.doi.org/10.1155/2013/582820. doi: 10.1155/2013/582820

    CrossRef Google Scholar

    [20] Y. Jin, X. Zhu, et al., Bifurcations of nontwisted heteroclinic loop with resonant eigenvalues, The Scientific World Journal, 2014. http://dx.doi.org/10.1155/2014/716082. doi: 10.1155/2014/716082

    CrossRef Google Scholar

    [21] Y. Jin, M. Zhu, et al., Bifurcations of twisted double homoclinic loops with resonant condition, The Journal of Nonlinear Science and Applications, 2016, 9(10), 5579–5620. doi: 10.22436/jnsa.009.10.08

    CrossRef Google Scholar

    [22] Y. Jin, S. Yang, et al., Bifurcations of heteroclininc loop with twisted conditions, International Journal of Bifurcation and Chaos, 2017, 27(8), DOI: 10.1142/S0218127417501206.

    CrossRef Google Scholar

    [23] Y. Jin, X. Zhu, et al., Bifurcations of twisted heteroclinic loop with resonant eigenvalues, Nonlinear Dynamics, 2018, 92(2), 557–573. doi: 10.1007/s11071-018-4075-7

    CrossRef Google Scholar

    [24] J. Li and B. Feng, Stability, Bifurcations and Chaos, Yunnan Scientific & Technical Publishers, Kunming, 1995. doi: 10.1007/s11071-018-4075-7

    CrossRef Google Scholar

    [25] J. Li, Y. Zhang and J. Liang, Bifurcations and exact travelling wave solutions for a new integrable nonlocal equation, Journal of Applied Analysis & Computation, 2021, 11(3), 1588–1599.

    Google Scholar

    [26] J. Li and M. Han, Planar integrable nonlinear oscillators having a stable limit cycle, Journal of Applied Analysis & Computation, 2022, 12(2), 862–867.

    Google Scholar

    [27] X. Liu and D. Zhu, On the stability of homoclinic loop with higher dimension, Discrete and Continuous Dynamical Systems, Series B, 2012, 17(3), 915–932. doi: 10.3934/dcdsb.2012.17.915

    CrossRef Google Scholar

    [28] B. Long and C. Zhu. Transverse homoclinic orbit bifurcated from a homoclinic manifold by the higher order Melnikov integrals, Journal of Applied Analysis & Computation, 2020, 10(4), 1651–1665.

    Google Scholar

    [29] D. Luo, X. Wang, D. Zhu and M. Han, Bifurcation Theory and Methods of Dynamical Systems, World Scientific, Singapore, 1997.

    Google Scholar

    [30] J. Song and J. Li, Bifurcations and exact travelling wave solutions for a shallow water wave model with a non-stationary bottom surface, Journal of Applied Analysis & Computation, 2020, 10(1), 350–360.

    Google Scholar

    [31] Q. Tian and D. Zhu, Bifurcations of nontwisted heteroclinic loop, Science in China, 2000, 43A(8), 818–828.

    Google Scholar

    [32] S. Wiggins, Introduction to Applied Nonlinear Dynamical System and Chaos, Second Edition, Springer-Verleg, New York, 2003.

    Google Scholar

    [33] S. Wiggins, Global Bifurcations and Chaos-Analytical Methods, Springer-Verlag, New York, 1988.

    Google Scholar

    [34] P. Yu, M. Han and Y. Bai, Dynamics and bifurcation study on an extended Lorenz system, Journal of Nonlinear Modeling and Analysis, 2019, 1(1), 107–128.

    Google Scholar

    [35] L. Zhang, I. Simbanefayi and C. M. Khalique, Travelling wave solutions and conservation laws of the (2+1)-dimensional Broer-Kaup-Kupershmidt equation, Journal of Nonlinear Modeling and Analysis, 2021, 3(3), 421–430.

    Google Scholar

    [36] T. Zhang, T. Xu, J. Wang and Z. Jiang, Homoclinic cycle and homoclinic bifurcations of a predator-prey model with impulsive state feedback control, Journal of Nonlinear Modeling and Analysis, 2020, 2(2), 227–240.

    Google Scholar

    [37] T. Zhang and D. Zhu, Bifurcations of homoclinic orbit connecting two nonleading eigendirections, International Journal of Bifurcation and Chaos, 2007, 17(3), 823–836. doi: 10.1142/S0218127407017574

    CrossRef Google Scholar

    [38] W. Zhang and D. Zhu, Codimension 2 bifurcations of double homoclinic loops, Chaos, Solitons & Fractrals, 2009, 39(1), 295–303.

    Google Scholar

    [39] X. Zhang, Homoclinic, heteroclinic and periodic orbits of singularly perturbed systems, Science in China, Math., 2019, 62(9), 1687–1704. doi: 10.1007/s11425-017-9223-6

    CrossRef Google Scholar

    [40] D. Zhu, Problems in homoclinic bifurcation with higher dimensions, Acta Mathematica Sinica, New Series, 1998, 14(3), 341–352.

    Google Scholar

    [41] D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Science in China, 1998, 41A(8), 837–848.

    Google Scholar

    [42] D. Zhu, Exponential trichotomy and heteroclinic bifurcation, Nonlinear Analysis TMA, 1997, 28(3), 547–557.

    Google Scholar

    [43] D. Zhu, Melnikov vector and heteroclinic manifold, Science in China, 1994, 37A(6), 673–682.

    Google Scholar

Figures(11)

Article Metrics

Article views(1958) PDF downloads(319) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint