2024 Volume 14 Issue 2
Article Contents

Yanli Tang, Yusen Wu, Feng Li. INTEGRABILITY AND BIFURCATION OF LIMIT CYCLES FOR A CLASS OF QUASI-HOMOGENEOUS SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1006-1013. doi: 10.11948/20230253
Citation: Yanli Tang, Yusen Wu, Feng Li. INTEGRABILITY AND BIFURCATION OF LIMIT CYCLES FOR A CLASS OF QUASI-HOMOGENEOUS SYSTEMS[J]. Journal of Applied Analysis & Computation, 2024, 14(2): 1006-1013. doi: 10.11948/20230253

INTEGRABILITY AND BIFURCATION OF LIMIT CYCLES FOR A CLASS OF QUASI-HOMOGENEOUS SYSTEMS

  • The integrability and bifurcation of limit cycles for a class of quasi-homogeneous systems are studied, with four integrability conditions being obtained, and the existence of seven limit cycles in the neighborhood of origin being proved.

    MSC: 34C07
  • 加载中
  • [1] A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl., 2012, 13, 419–431. doi: 10.1016/j.nonrwa.2011.07.056

    CrossRef Google Scholar

    [2] A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasi-homogeneous polynomial differential systems, Rocky Mountain J. Math., 2011, 41, 1–22.

    Google Scholar

    [3] A. Algaba, C. Garca and M. Reyes, The center problem for a family of systems of differential equations having a nilpotent singular point, J. Math. Anal. Appl., 2008, 340(1), 32–43. doi: 10.1016/j.jmaa.2007.07.043

    CrossRef Google Scholar

    [4] M. Alvarez and A. Gasull, Monodromy and stablility for nipotent critical points, Int. J. Bifur. Chaos, 2005, 15(4), 1253–1265. doi: 10.1142/S0218127405012740

    CrossRef Google Scholar

    [5] M. Alvarez and A. Gasull, Cenerating limits cycles from a nipotent critical point via normal forms, J. Math. Anal. Appl., 2006, 318, 271–287. doi: 10.1016/j.jmaa.2005.05.064

    CrossRef Google Scholar

    [6] Y. An and M. Han, On the number of limit cycles near a homoclinic loop with a nilpotent singular point, J. Differ. Eqns., 2015, 258(9), 3194–3247. doi: 10.1016/j.jde.2015.01.006

    CrossRef Google Scholar

    [7] N. N. Bautin, On the number of limit cycles which appear with variation of coefficients from an equilibrium position of focus or center type, Amer. Math. Soc. Transl., 1954, 100, 397–413.

    Google Scholar

    [8] J. Chavarriga and J. Gine, Integrability of Cubic with Degenerate Infinity, Proceedings of XIV CEDYA, Vic, 1995. available via http://www-ma1.upc.esrcedyarcedya.html.

    Google Scholar

    [9] J. Chavarriga and J. Gine, Integrability of a linear center perturbed by fourth degree homogeneous polynomial, Publ. Mat., 1996, 40, 21–39. doi: 10.5565/PUBLMAT_40196_03

    CrossRef Google Scholar

    [10] J. Chavarriga and J. Gine, Integrability of a linear center perturbed by fifth degree homogeneous polynomial, Publ. Mat., 1997, 41(2), 335–356.

    Google Scholar

    [11] C. J. Christopher, Invariant algebraic curves and conditions for centre, Proc. Roy. Soc. Edinburgh Sect., 1994, 124, 1209–1229. doi: 10.1017/S0308210500030213

    CrossRef Google Scholar

    [12] I. Colak, J. Llibre and C. Valls, Bifurcation diagrams for Hamiltonian nilpotent centers of linear plus cubic homogeneous polynomial vector fields, J. Differ. Eqns., 2017, 262(11), 5518–5533. doi: 10.1016/j.jde.2017.02.001

    CrossRef Google Scholar

    [13] L. P. C. Da Cruz, V. G. Romanovski and J. Torregrosa, The center and cyclicity problems for quartic linear-like reversible systems, Nonl. Anal. : An International Multidisciplinary Journal, 2020, 190(1), 111593.

    Google Scholar

    [14] M. Han and J. Yang, The maximum number of zeros of functions with Parameters and application to differential equations, J. Nonl. Mode. Anal., 2021, 3, 13–34.

    Google Scholar

    [15] F. Li, H. W. Li and Y. Y. Liu, New double bifurcation of nilpotent focus, Int. J. Bifurcation and Chaos, 2021, 31, 2150053. doi: 10.1142/S021812742150053X

    CrossRef Google Scholar

    [16] F. Li, Y. R. Liu, Y. Y. Liu and P. Yu, Bi-center problem and bifurcation of limit cycles from nilpotent singular points in Z2-equivariant cubic vector fields, J. Differ. Equ., 2018, 265, 4965–4992. doi: 10.1016/j.jde.2018.06.027

    CrossRef Google Scholar

    [17] F. Li, Y. R. Liu, Y. Y. Liu and P. Yu, Complex isochronous centers and linearization transformations for cubic Z2-equivariant planar systems, J. Differ. Equ., 2020, 268, 3819–3847. doi: 10.1016/j.jde.2019.10.011

    CrossRef Google Scholar

    [18] F. Li, Y. R. Liu, Y. Y. Tian and P. Yu, Integrability and linearizability of cubic Z2 systems with non-resonant singular points, J. Differ. Equ., 2020, 269, 9026–90492. doi: 10.1016/j.jde.2020.06.036

    CrossRef Google Scholar

    [19] F. Li, Y. Y. Liu, P. Yu and J. L. Wang, Complex integrability and linearizability of cubic Z2-equivariant systems with two 1: q resonant singular points, J. Differ. Equ., 2021, 300, 786–813. doi: 10.1016/j.jde.2021.08.015

    CrossRef Google Scholar

    [20] J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems, Nonlinearity, 2002, 15, 1269–1280.

    Google Scholar

    [21] T. Liu, F. Li, Y. Liu, S. Li and J. Wang, Bifurcation of limit cycles and center problem for p: q homogeneous weight systems, Nonlinear Anal. Real World Appl., 2019, 46, 257–273.

    Google Scholar

    [22] Y. R. Liu, J. B. Li and W. T. Huang, Planar Dynamical System, Bertin/Boston: Science Press and Walter de Gruyter GmbH, 2015.

    Google Scholar

    [23] J. M. Pearson, N. G. Lloyd and C. J. Christopher, Algorithmic derivation of centre conditions, SIAM Re., 1996, 619–636.

    Google Scholar

    [24] V. G. Romanovski, W. Fernandes and R. Oliveira, Bi-center problem for some classes of z2-equivariant systems, J. Computational and Applied Mathematics, 2017, 320.

    Google Scholar

    [25] Y. Tang, L. Wang and X. Zhang, Center of planar quintic quasi-homogeneous polynomial differential systems, Discrete Contin Dyn Syst, 2014, 35, 2177–2191.

    Google Scholar

    [26] Y. S. Wu, H. W. Li and A. Alsaedi, Center conditions and bifurcation of limit cycles created from a class of second-order ODEs, Int. J. Bifurcation and Chaos, 2019, 29(29), 1950003.

    Google Scholar

    [27] Y. Xiong and M. Han, Planar quasi-homogeneous polynomial system with a given weight degree, Discrete Contin Dyn Syst, 2016, 36, 4015–4025.

    Google Scholar

    [28] Y. Xiong, M. Han and Y. Wang, Center problems and limit cycle bifurcations in a class of quasi-homogeneous systems, Int. J. Bifurcation and Chaos, 2015, 25, 1–12.

    Google Scholar

    [29] P. Yu and F. Li, Bifurcation of limit cycles in a cubic-order planar system around a nilpotent critical point, J. Math. Anal. Appl., 2017, 453, 645–667.

    Google Scholar

    [30] Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields, J. Math. Anal. Appl., 2013, 397, 276–284.

    Google Scholar

Article Metrics

Article views(282) PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint