2024 Volume 14 Issue 1
Article Contents

Qigui Yang, Jiabing Huang. A STOCHASTIC MULTI-SCALE COVID-19 MODEL WITH INTERVAL PARAMETERS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 515-542. doi: 10.11948/20230298
Citation: Qigui Yang, Jiabing Huang. A STOCHASTIC MULTI-SCALE COVID-19 MODEL WITH INTERVAL PARAMETERS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 515-542. doi: 10.11948/20230298

A STOCHASTIC MULTI-SCALE COVID-19 MODEL WITH INTERVAL PARAMETERS

  • Author Bio: Email: jiabinghuangmaths@163.com(J. Huang)
  • Corresponding author: Email: qgyang@scut.edu.cn(Q. Yang) 
  • Fund Project: The authors were supported by the National Natural Science Foundation of China (No. 12071151), Natural Science Foundation of Guangdong Province (Grant Nos. 2021A1515010052)
  • A stochastic multi-scale COVID-19 model that coupling within-host and between-host dynamics with interval parameters is established. The model is composed of a within-host fast model and a between-host slow stochastic model. The dynamics of fast model can be governed by basic reproduction number $ R_{0w} $. The uninfected equilibrium $ E_{0w} $ is globally asymptotically stable (g.a.s) when $ R_{0w}<1 $, but infected equilibrium $ E_{fast}^{*} $ is g.a.s when $ R_{0w}>1 $. The dynamics of the coupling slow stochastic model can be governed by stochastic threshold $ R_{s} $. The disease will die out when $ R_{s}<1 $ and will persistent in mean when $ R_{s}>1 $. One finds that $ R_{s} $ is an increasing function of $ R_{0w} $. Further, some numerical simulations are presented to demonstrate the results and reveal that the dynamics of the slow stochastic model are approximate to the stochastic multi-scale model. It provides us a method to investigate the stochastic multi-scale model. Furthermore, some effective measures are given to control the COVID-19. Moreover, our work contributes basic understandings of coupling within-host and between-host models with interval parameters and environmental noises.

    MSC: 92D30, 92B05, 34F05
  • 加载中
  • [1] P. Abuin, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas and A. H. Gonzalez, Characterization of SARS-CoV-2 dynamics in the host, Annu. Rev. Control., 2020, 50, 457–468. doi: 10.1016/j.arcontrol.2020.09.008

    CrossRef Google Scholar

    [2] A. E. S. Almocera, V. K. Nguyen and E. A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases, J. Math. Biol., 2018, 77, 1035–1057. doi: 10.1007/s00285-018-1241-y

    CrossRef Google Scholar

    [3] K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic SIRS model with interval parameters, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(9), 4827–4849.

    Google Scholar

    [4] L. C. Barros, R. Bassanezi and P. Tonelli, Fuzzy modelling in population dynamics, Ecol. Modell., 2000, 128(1), 27–33. doi: 10.1016/S0304-3800(99)00223-9

    CrossRef Google Scholar

    [5] Y. Cai, Y. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 2017, 305, 221–240.

    Google Scholar

    [6] T. Caraballo, M. E. Fatini, I. Sekkak, R. Taki and A. Laaribi, A stochastic threshold for an epidemic model with isolation and a non linear incidence, Commun. Pure Appl. Anal., 2020, 19(5), 2513–2531. doi: 10.3934/cpaa.2020110

    CrossRef Google Scholar

    [7] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361–404. doi: 10.3934/mbe.2004.1.361

    CrossRef Google Scholar

    [8] P. H. Crowly and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North. Am. Benthol. Soc., 1989, 8(3), 211–221. doi: 10.2307/1467324

    CrossRef Google Scholar

    [9] A. Das and M. Pal, A mathematical study of an imprecise SIR epidemic model with treatment control, J. Appl. Math. Comput., 2018, 56, 477–500. doi: 10.1007/s12190-017-1083-6

    CrossRef Google Scholar

    [10] N. T. Dieu, V. H. Sam and N. H. Du, Threshold of a stochastic SIQS epidemic model with isolation, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(9), 5009–5028. doi: 10.3934/dcdsb.2021262

    CrossRef Google Scholar

    [11] M. El Fatini, I. Sekkak and A. Laaribi, A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination, Phys. A., 2019, 520, 151–160. doi: 10.1016/j.physa.2019.01.014

    CrossRef Google Scholar

    [12] Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos and M. C. A. Leite, A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn., 2012, 68, 401–411. doi: 10.1007/s11071-011-0291-0

    CrossRef Google Scholar

    [13] M. A. Gilchrist and D. Coombs, Evolution of virulence: Interdependence, constraints and selection using nested models, Theoret. Population Biology, 2006, 69(2), 145–153. doi: 10.1016/j.tpb.2005.07.002

    CrossRef Google Scholar

    [14] A. Handel and P. Rohani, Crossing the scale from within-host infection dynamics to between-host transmission fitness: A discussion of current assumptions and knowledge, Philos. Trans. R. Soc. B. Biol. Sci., 2015, 370(1675), 20140302. DOI: 10.1098/rstb.2014.0302.

    CrossRef Google Scholar

    [15] H. Hethcote, Z. Ma and S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 2002, 180(1–2), 141–160. doi: 10.1016/S0025-5564(02)00111-6

    CrossRef Google Scholar

    [16] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525–546. doi: 10.1137/S0036144500378302

    CrossRef Google Scholar

    [17] Hong Kong Special Administrative Region Census and Statistics Department, 2021. Available from: https://www.censtatd.gov.hk/sc/scode600.html.

    Google Scholar

    [18] C. Ji and D. Jiang, The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations, Math. Methods Appl. Sci., 2017, 40(5), 1773–1782. doi: 10.1002/mma.4096

    CrossRef Google Scholar

    [19] C. Ji and D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 2014, 38(21–22), 5067–5079. doi: 10.1016/j.apm.2014.03.037

    CrossRef Google Scholar

    [20] G. Jiang and Q. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination, Appl. Math. Comput., 2009, 215(3), 1035–1046.

    Google Scholar

    [21] J. Jiao, Z. Liu and S. Cai, Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible, Appl. Math. Lett., 2020, 107, 106442. DOI: 10.1016/j.aml.2020.106442.

    CrossRef Google Scholar

    [22] W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-i, Proc. R. Soc. Lond. Ser. A, 1927, 115(772), 701–721.

    Google Scholar

    [23] D. Kiouach, Y. Sabbar and S. El Azami El-idrissi, New results on the asymptotic behavior of an SIS epidemiological model with quarantine strategy, stochastic transmission, and Lévy disturbance, Math. Methods Appl. Sci., 2021, 44(17), 13468–13492. doi: 10.1002/mma.7638

    CrossRef Google Scholar

    [24] C. Li, J. Xu, J. Liu and Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 2020, 17(4), 2853–2861. doi: 10.3934/mbe.2020159

    CrossRef Google Scholar

    [25] X. Li, S. Gao, Y. Fu and M. Martcheva, Modeling and research on an immuno-epidemiological coupled system with coinfection, Bull. Math. Biol., 2021, 83(11), 1–42.

    Google Scholar

    [26] Q. Liu and D. Jiang, Dynamics of a multigroup SIS epidemic model with standard incidence rates and Markovian switching, Phys. A., 2019, 527, 121270. DOI: 10.1016/j.physa.2019.121270.

    CrossRef Google Scholar

    [27] Q. Liu and Y. Xiao, A coupled evolutionary model of the viral virulence in an SIS community, Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(9), 5012–5036. doi: 10.3934/dcdsb.2023051

    CrossRef Google Scholar

    [28] Y. Liu, D. Kuang and J. Li, Threshold behaviour of a triple-delay SIQR stochastic epidemic model with Lévy noise perturbation, AIMS Math., 2022, 7(9), 16498–16518. doi: 10.3934/math.2022903

    CrossRef Google Scholar

    [29] X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997.

    Google Scholar

    [30] D. Mollison, Dependence of epidemic and population velocities on basic parameters, Math. Biosci., 1991, 107(2), 255–287. doi: 10.1016/0025-5564(91)90009-8

    CrossRef Google Scholar

    [31] B. J. Nath, K. Dehingia and V. N. Mishra, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Difference Equ., 2021, 1, 1–11.

    Google Scholar

    [32] G. Shao and J. Su, Sensitivity and inverse analysis methods for parameter intervals, J. Rock. Mech. Geotech. Eng., 2010, 2(3), 274–280. doi: 10.3724/SP.J.1235.2010.00274

    CrossRef Google Scholar

    [33] H. Song, S. Liu and W. Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, Math. Methods Appl. Sci., 2017, 40(6), 2153–2164. doi: 10.1002/mma.4130

    CrossRef Google Scholar

    [34] H. Song, F. Liu, F. Li, X. Cao, H. Wang, Z. Jia, H. Zhu, M. Y. Li, W. Lin, H. Yang, J. Hu and Z. Jin, Modeling the second outbreak of COVID-19 with isolation and contact tracing, Discrete Contin. Dyn. Syst. Ser. B, 2021, 27(10), 5757–5777.

    Google Scholar

    [35] P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equ., 2019, 267(9), 5084–5114. doi: 10.1016/j.jde.2019.05.022

    CrossRef Google Scholar

    [36] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1–2), 29–48.

    Google Scholar

    [37] V. Verma, Stability analysis of SIQS mathematical model for pandemic coronavirus spread, J. Appl. Nonlinear Dyn., 2022, 11(3), 591–603. doi: 10.5890/JAND.2022.09.006

    CrossRef Google Scholar

    [38] W. Wang and Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 2012, 11(4), 1652–1673. doi: 10.1137/120872942

    CrossRef Google Scholar

    [39] X. Wang, S. Wang, J. Wang and L. Rong, A multiscale model of COVID-19 dynamics, Bull. Math. Biol., 2022, 84(9), 99. doi: 10.1007/s11538-022-01058-8

    CrossRef Google Scholar

    [40] F. Wei and F. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Phys. A., 2016, 453(1), 99–107.

    Google Scholar

    [41] Y. Wei, Q. Yang and G. Li, Dynamics of the stochastically perturbed heroin epidemic model under non-degenerate noises, Phys. A., 2019, 526, 120914. DOI: 10.1016/j.physa.2019.04.150.

    CrossRef Google Scholar

    [42] World Health Organization (WHO), Coronavirus Disease (COVID-19) Pandemic, Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.

    Google Scholar

    [43] Worldometer, Available from: https://www.worldometers.info/coronavirus/country/china-hong-kong-sar/.

    Google Scholar

    [44] H. Wu, Y. Zhao, C. Zhang, J. Wu and J. Lou, structural and practical identifiabilit analyses on the transmission dynamics of COVID-19 in the united states, J. Appl. Anal. Comput., 2022, 12(4), 1475–1495.

    Google Scholar

    [45] Y. Xue and Y. Xiao, Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics, Math. Biosci. Eng., 2020, 17(6), 6720–6736. doi: 10.3934/mbe.2020350

    CrossRef Google Scholar

    [46] X. Zhang, H. Huo, H. Xiang, Q. Shi and D. Li, The threshold of a stochastic SIQS epidemic model, Phys. A., 2017, 482, 362–374. doi: 10.1016/j.physa.2017.04.100

    CrossRef Google Scholar

    [47] H. Zhao, P. Wu and S. Ruan, Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25(9), 3491–3521.

    Google Scholar

    [48] D. Zhong and J. Lian, The region analysis of model parameters sensitivity on the simulation calculation on dam construction, Comput. Simul., 2003, 20(12), 48–50.

    Google Scholar

Figures(6)  /  Tables(2)

Article Metrics

Article views(1453) PDF downloads(347) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint