Citation: | Qigui Yang, Jiabing Huang. A STOCHASTIC MULTI-SCALE COVID-19 MODEL WITH INTERVAL PARAMETERS[J]. Journal of Applied Analysis & Computation, 2024, 14(1): 515-542. doi: 10.11948/20230298 |
A stochastic multi-scale COVID-19 model that coupling within-host and between-host dynamics with interval parameters is established. The model is composed of a within-host fast model and a between-host slow stochastic model. The dynamics of fast model can be governed by basic reproduction number $ R_{0w} $. The uninfected equilibrium $ E_{0w} $ is globally asymptotically stable (g.a.s) when $ R_{0w}<1 $, but infected equilibrium $ E_{fast}^{*} $ is g.a.s when $ R_{0w}>1 $. The dynamics of the coupling slow stochastic model can be governed by stochastic threshold $ R_{s} $. The disease will die out when $ R_{s}<1 $ and will persistent in mean when $ R_{s}>1 $. One finds that $ R_{s} $ is an increasing function of $ R_{0w} $. Further, some numerical simulations are presented to demonstrate the results and reveal that the dynamics of the slow stochastic model are approximate to the stochastic multi-scale model. It provides us a method to investigate the stochastic multi-scale model. Furthermore, some effective measures are given to control the COVID-19. Moreover, our work contributes basic understandings of coupling within-host and between-host models with interval parameters and environmental noises.
[1] | P. Abuin, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas and A. H. Gonzalez, Characterization of SARS-CoV-2 dynamics in the host, Annu. Rev. Control., 2020, 50, 457–468. doi: 10.1016/j.arcontrol.2020.09.008 |
[2] | A. E. S. Almocera, V. K. Nguyen and E. A. Hernandez-Vargas, Multiscale model within-host and between-host for viral infectious diseases, J. Math. Biol., 2018, 77, 1035–1057. doi: 10.1007/s00285-018-1241-y |
[3] | K. Bao, L. Rong and Q. Zhang, Analysis of a stochastic SIRS model with interval parameters, Discrete Contin. Dyn. Syst. Ser. B, 2019, 24(9), 4827–4849. |
[4] | L. C. Barros, R. Bassanezi and P. Tonelli, Fuzzy modelling in population dynamics, Ecol. Modell., 2000, 128(1), 27–33. doi: 10.1016/S0304-3800(99)00223-9 |
[5] | Y. Cai, Y. Kang and W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 2017, 305, 221–240. |
[6] | T. Caraballo, M. E. Fatini, I. Sekkak, R. Taki and A. Laaribi, A stochastic threshold for an epidemic model with isolation and a non linear incidence, Commun. Pure Appl. Anal., 2020, 19(5), 2513–2531. doi: 10.3934/cpaa.2020110 |
[7] | C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 2004, 1(2), 361–404. doi: 10.3934/mbe.2004.1.361 |
[8] | P. H. Crowly and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North. Am. Benthol. Soc., 1989, 8(3), 211–221. doi: 10.2307/1467324 |
[9] | A. Das and M. Pal, A mathematical study of an imprecise SIR epidemic model with treatment control, J. Appl. Math. Comput., 2018, 56, 477–500. doi: 10.1007/s12190-017-1083-6 |
[10] | N. T. Dieu, V. H. Sam and N. H. Du, Threshold of a stochastic SIQS epidemic model with isolation, Discrete Contin. Dyn. Syst. Ser. B, 2022, 27(9), 5009–5028. doi: 10.3934/dcdsb.2021262 |
[11] | M. El Fatini, I. Sekkak and A. Laaribi, A threshold of a delayed stochastic epidemic model with Crowly-Martin functional response and vaccination, Phys. A., 2019, 520, 151–160. doi: 10.1016/j.physa.2019.01.014 |
[12] | Z. Feng, J. Velasco-Hernandez, B. Tapia-Santos and M. C. A. Leite, A model for coupling within-host and between-host dynamics in an infectious disease, Nonlinear Dyn., 2012, 68, 401–411. doi: 10.1007/s11071-011-0291-0 |
[13] | M. A. Gilchrist and D. Coombs, Evolution of virulence: Interdependence, constraints and selection using nested models, Theoret. Population Biology, 2006, 69(2), 145–153. doi: 10.1016/j.tpb.2005.07.002 |
[14] | A. Handel and P. Rohani, Crossing the scale from within-host infection dynamics to between-host transmission fitness: A discussion of current assumptions and knowledge, Philos. Trans. R. Soc. B. Biol. Sci., 2015, 370(1675), 20140302. DOI: 10.1098/rstb.2014.0302. |
[15] | H. Hethcote, Z. Ma and S. Liao, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 2002, 180(1–2), 141–160. doi: 10.1016/S0025-5564(02)00111-6 |
[16] | D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3), 525–546. doi: 10.1137/S0036144500378302 |
[17] |
Hong Kong Special Administrative Region Census and Statistics Department, 2021. Available from: |
[18] | C. Ji and D. Jiang, The threshold of a non-autonomous SIRS epidemic model with stochastic perturbations, Math. Methods Appl. Sci., 2017, 40(5), 1773–1782. doi: 10.1002/mma.4096 |
[19] | C. Ji and D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 2014, 38(21–22), 5067–5079. doi: 10.1016/j.apm.2014.03.037 |
[20] | G. Jiang and Q. Yang, Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination, Appl. Math. Comput., 2009, 215(3), 1035–1046. |
[21] | J. Jiao, Z. Liu and S. Cai, Dynamics of an SEIR model with infectivity in incubation period and homestead-isolation on the susceptible, Appl. Math. Lett., 2020, 107, 106442. DOI: 10.1016/j.aml.2020.106442. |
[22] | W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics-i, Proc. R. Soc. Lond. Ser. A, 1927, 115(772), 701–721. |
[23] | D. Kiouach, Y. Sabbar and S. El Azami El-idrissi, New results on the asymptotic behavior of an SIS epidemiological model with quarantine strategy, stochastic transmission, and Lévy disturbance, Math. Methods Appl. Sci., 2021, 44(17), 13468–13492. doi: 10.1002/mma.7638 |
[24] | C. Li, J. Xu, J. Liu and Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 2020, 17(4), 2853–2861. doi: 10.3934/mbe.2020159 |
[25] | X. Li, S. Gao, Y. Fu and M. Martcheva, Modeling and research on an immuno-epidemiological coupled system with coinfection, Bull. Math. Biol., 2021, 83(11), 1–42. |
[26] | Q. Liu and D. Jiang, Dynamics of a multigroup SIS epidemic model with standard incidence rates and Markovian switching, Phys. A., 2019, 527, 121270. DOI: 10.1016/j.physa.2019.121270. |
[27] | Q. Liu and Y. Xiao, A coupled evolutionary model of the viral virulence in an SIS community, Discrete Contin. Dyn. Syst. Ser. B, 2023, 28(9), 5012–5036. doi: 10.3934/dcdsb.2023051 |
[28] | Y. Liu, D. Kuang and J. Li, Threshold behaviour of a triple-delay SIQR stochastic epidemic model with Lévy noise perturbation, AIMS Math., 2022, 7(9), 16498–16518. doi: 10.3934/math.2022903 |
[29] | X. Mao, Stochastic Differential Equations and their Applications, Horwood, Chichester, 1997. |
[30] | D. Mollison, Dependence of epidemic and population velocities on basic parameters, Math. Biosci., 1991, 107(2), 255–287. doi: 10.1016/0025-5564(91)90009-8 |
[31] | B. J. Nath, K. Dehingia and V. N. Mishra, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Difference Equ., 2021, 1, 1–11. |
[32] | G. Shao and J. Su, Sensitivity and inverse analysis methods for parameter intervals, J. Rock. Mech. Geotech. Eng., 2010, 2(3), 274–280. doi: 10.3724/SP.J.1235.2010.00274 |
[33] | H. Song, S. Liu and W. Jiang, Global dynamics of a multistage SIR model with distributed delays and nonlinear incidence rate, Math. Methods Appl. Sci., 2017, 40(6), 2153–2164. doi: 10.1002/mma.4130 |
[34] | H. Song, F. Liu, F. Li, X. Cao, H. Wang, Z. Jia, H. Zhu, M. Y. Li, W. Lin, H. Yang, J. Hu and Z. Jin, Modeling the second outbreak of COVID-19 with isolation and contact tracing, Discrete Contin. Dyn. Syst. Ser. B, 2021, 27(10), 5757–5777. |
[35] | P. Song, Y. Lou and Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equ., 2019, 267(9), 5084–5114. doi: 10.1016/j.jde.2019.05.022 |
[36] | P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 2002, 180(1–2), 29–48. |
[37] | V. Verma, Stability analysis of SIQS mathematical model for pandemic coronavirus spread, J. Appl. Nonlinear Dyn., 2022, 11(3), 591–603. doi: 10.5890/JAND.2022.09.006 |
[38] | W. Wang and Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Syst., 2012, 11(4), 1652–1673. doi: 10.1137/120872942 |
[39] | X. Wang, S. Wang, J. Wang and L. Rong, A multiscale model of COVID-19 dynamics, Bull. Math. Biol., 2022, 84(9), 99. doi: 10.1007/s11538-022-01058-8 |
[40] | F. Wei and F. Chen, Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations, Phys. A., 2016, 453(1), 99–107. |
[41] | Y. Wei, Q. Yang and G. Li, Dynamics of the stochastically perturbed heroin epidemic model under non-degenerate noises, Phys. A., 2019, 526, 120914. DOI: 10.1016/j.physa.2019.04.150. |
[42] |
World Health Organization (WHO), Coronavirus Disease (COVID-19) Pandemic, Available from: |
[43] |
Worldometer, Available from: |
[44] | H. Wu, Y. Zhao, C. Zhang, J. Wu and J. Lou, structural and practical identifiabilit analyses on the transmission dynamics of COVID-19 in the united states, J. Appl. Anal. Comput., 2022, 12(4), 1475–1495. |
[45] | Y. Xue and Y. Xiao, Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics, Math. Biosci. Eng., 2020, 17(6), 6720–6736. doi: 10.3934/mbe.2020350 |
[46] | X. Zhang, H. Huo, H. Xiang, Q. Shi and D. Li, The threshold of a stochastic SIQS epidemic model, Phys. A., 2017, 482, 362–374. doi: 10.1016/j.physa.2017.04.100 |
[47] | H. Zhao, P. Wu and S. Ruan, Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China, Discrete Contin. Dyn. Syst. Ser. B, 2020, 25(9), 3491–3521. |
[48] | D. Zhong and J. Lian, The region analysis of model parameters sensitivity on the simulation calculation on dam construction, Comput. Simul., 2003, 20(12), 48–50. |
(a) Fitting the deterministic model (1.2) to the real data in Hongkong: the number of COVID-19 infected person; (b) Variation of
(a) Times series of
(a) Times series of
(a) Times series of
(a) Times series of
(a) Variation of