2024 Volume 14 Issue 6
Article Contents

Ali Akgül, Dumitru Baleanu, Enver Ülgül, Necibullah Sakar, Nourhane Attia. ANALYSIS OF NEW TRANSFER FUNCTIONS WITH SUM INTEGRAL TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3282-3305. doi: 10.11948/20240001
Citation: Ali Akgül, Dumitru Baleanu, Enver Ülgül, Necibullah Sakar, Nourhane Attia. ANALYSIS OF NEW TRANSFER FUNCTIONS WITH SUM INTEGRAL TRANSFORMATION[J]. Journal of Applied Analysis & Computation, 2024, 14(6): 3282-3305. doi: 10.11948/20240001

ANALYSIS OF NEW TRANSFER FUNCTIONS WITH SUM INTEGRAL TRANSFORMATION

  • We explore the novel SUM integral transform method for solving ordinary and partial differential equations, offering an effective approach beyond conventional Laplace and Sumudu transforms. Using this method, we address various differential equations, deriving transfer functions for classical and fractional derivatives. The resultant transfer functions provide valuable insights into diverse mathematical models.

    MSC: 35A22, 26A33
  • 加载中
  • [1] R. Agarwal and U. P. Sharma, Bicomplex Mittag-Leffler function and applications in integral transform and fractional calculus, in: P. Srivastava, M. L. Thivagar, G. I. Oros, C. C. Tan (eds) Mathematical and Computational Intelligence to Socio-Scientific Analytics and Applications. Lecture Notes in Networks and Systems, vol 518, Springer, Singapore, 2022.

    Google Scholar

    [2] A. Akgül, E. Ülgül, N. Sakar, B. Bilgi and A. Eker, New applications of the new general integral transform method with different fractional derivatives, Alex. Eng. J., 2023, 80, 498–505. doi: 10.1016/j.aej.2023.08.064

    CrossRef Google Scholar

    [3] E. K. Akgül, A. Akgül and M. Yavuz, New illustrative applications of integral transforms to financial models with different fractional derivatives, Chaos Solit. Fractals, 2021, 146, 110877. doi: 10.1016/j.chaos.2021.110877

    CrossRef Google Scholar

    [4] S. Q. Alasadi, A. I. M. Mansour and U. M. A. Abubakar, Applications of the SUM integral transform in science and technology: Main result, Wasit J. Eng. Sci., 2023, 2(3), 29–40.

    Google Scholar

    [5] M. Al-Refai and D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 2022, 30(5), 2240129. doi: 10.1142/S0218348X22401296

    CrossRef Google Scholar

    [6] A. Atangana and A. Akgül, Can transfer function and Bode diagram be obtained from Sumudu transform, Alex. Eng. J., 2020, 59(4), 1971–1984. doi: 10.1016/j.aej.2019.12.028

    CrossRef Google Scholar

    [7] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 2016, 20(2), 763–769. doi: 10.2298/TSCI160111018A

    CrossRef Google Scholar

    [8] D. Baleanu, A. Fernandez and A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 2020, 8(3), 360. doi: 10.3390/math8030360

    CrossRef Google Scholar

    [9] M. Batool, M. Farman, A. Ahmad and K. S. Nisar, Mathematical study of polycystic ovarian syndrome disease including medication treatment mechanism for infertility in women, AIMS Public Health, 2023, 11(1), 19–35.

    Google Scholar

    [10] M. Caputo, Linear models of dissipation whose Q is almost frequency independent–Ⅱ, Geophys. J. Int., 1967, 13(5), 529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x

    CrossRef Google Scholar

    [11] M. Caputo, A model for the fatigue in elastic materials with frequency independent Q, J. Acoust. Soc. Am., 1979, 66(1), 176–179. doi: 10.1121/1.383058

    CrossRef Google Scholar

    [12] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 2015, 1(2), 73–85.

    Google Scholar

    [13] M. Caputo and M. Fabrizio, On the singular kernels for fractional derivatives, some applications to partial differential equations, Progr. Fract. Differ. Appl., 2021, 7(2), 79–82. doi: 10.18576/pfda/070201

    CrossRef Google Scholar

    [14] M. Farman, A. Shehzad, A. Akgül, E. Hincal, D. Baleanu and S. M. El Din, A fractal-fractional sex structured syphilis model with three stages of infection and loss of immunity with analysis and modeling, Results Phys., 2023, 54, 107098. doi: 10.1016/j.rinp.2023.107098

    CrossRef Google Scholar

    [15] S. Q. Hasan, U. M. Abubakar and M. L. Kaurangini, The new integral transform "SUM transform" and its properties, PJM, 2023, 12(1), 30–45.

    Google Scholar

    [16] J. Hristov, On a new approach to distributions with variable transmuting parameter: The concept and examples with emerging problems, MMNSA, 2022, 2(2), 73–87.

    Google Scholar

    [17] H. Jafari, A new general integral transform for solving integral equations, J. Adv. Res., 2021, 32, 133–138.

    Google Scholar

    [18] R. M. Jena, S. Chakraverty and M. Yavuz, Two-hybrid techniques coupled with an integral transformation for Caputo time-fractional Navier-Stokes equations, Progr. Fract. Differ. Appl., 2020, 6(3), 201–213.

    Google Scholar

    [19] H. S. Kadhem and S. Q. Hassan, Solving some fractional partial differential equations by invariant subspace and double Sumudu transform methods, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 2020, 33(3), 127–139.

    Google Scholar

    [20] Kamran, S. Ahmad, K. Shah, T. Abdeljawad and B. Abdalla, On the approximation of fractal-fractional differential equations using numerical inverse Laplace transform methods, CMES, 2023, 135(3), 2743–2765.

    Google Scholar

    [21] M. Meddahi, H. Jafari and M. N. Ncube, New general integral transform via Atangana-Baleanu derivatives, Adv. Differ. Equ., 2021, 2021(1), 385.

    Google Scholar

    [22] M. Modanlıand M. E. Koksal, Laplace transform collocation method for telegraph equations defined by Caputo derivative, MMNSA, 2022, 2(3), 177–186.

    Google Scholar

    [23] S. Samah, M. K. Kothawade, M. Sd. Shinde and A. Maheshwari, Applicatios of Laplace transform in mechanical engineering, IRJMETS, 2022, 4(3), 1257–1264.

    Google Scholar

    [24] N. Sene, Second-grade fluid with Newtonian heating under Caputo fractional derivative: Analytical investigations via Laplace transforms, MMNSA, 2022, 2(1), 13–25.

    Google Scholar

    [25] C. Xu and M. Farman, Dynamical transmission and mathematical analysis of Ebola virus using a constant proportional operator with a power law kernel, Fractal Fract., 2023, 7(10), 706.

    Google Scholar

    [26] C. Xu and M. Farman, Qualitative and Ulam-Hyres stability analysis of fractional order cancer-immune model, Chaos Solit. Fractals., 2023, 177, 114277.

    Google Scholar

    [27] C. Xu, M. Farman and A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., 2023, 2350105.

    Google Scholar

    [28] M. Yavuz and T. Abdeljawad, Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel, Adv. Differ. Equ., 2020, 2020(1), 367.

    Google Scholar

    [29] M. Yavuz and N. Sene, Approximate solutions of the model describing fluid flow using generalized $\rho$-Laplace transform method and heat balance integral method, Axioms, 2020, 9(4), 123.

    $\rho$-Laplace transform method and heat balance integral method" target="_blank">Google Scholar

Figures(18)

Article Metrics

Article views(621) PDF downloads(569) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint