2025 Volume 15 Issue 1
Article Contents

Vicente Candela, Natalia Expósito, Pedro J. Martínez−Aparicio, Juan Carlos Trillo. ON THE GENERALIZATION OF SECANT METHOD AND THE ORDER OF CONVERGENCE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 245-260. doi: 10.11948/20240082
Citation: Vicente Candela, Natalia Expósito, Pedro J. Martínez−Aparicio, Juan Carlos Trillo. ON THE GENERALIZATION OF SECANT METHOD AND THE ORDER OF CONVERGENCE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 245-260. doi: 10.11948/20240082

ON THE GENERALIZATION OF SECANT METHOD AND THE ORDER OF CONVERGENCE

  • In this paper we start generalizing the well known Secant and Müller methods by using higher degree polynomials. Although such generalization does already exist, we prove in an original and elegant way that the order of convergence $p$ is limited by p = 2. The techniques used in this paper could also be helpful in other contexts. We also perform some numerical experiments to reinforce the theoretical results.

    MSC: 65H04, 65H05
  • 加载中
  • [1] M. D. S. Aliyu, A modified-secant iterative method for solving the Hamilton-Jacobi-Bellman-Isaac equations in non-linear optimal control, IET Control Theory Appl., 2016, 10(16), 2136–2141. doi: 10.1049/iet-cta.2016.0108

    CrossRef Google Scholar

    [2] Z. Aminifard, S. Babaie-Kafaki and S. Ghafoori, An augmented memoryless BFGS method based on a modified secant equation with application to compressed sensing, Appl. Numer. Math., 2021, 167, 187–201. doi: 10.1016/j.apnum.2021.05.002

    CrossRef Google Scholar

    [3] I. K. Argyros, D. González and H. Ren, Improved convergence ball and error analysis of Müller method, Bol. Soc. Parana. Mat., 2022, 40(3), 1–6.

    Google Scholar

    [4] I. K. Argyros, M. A. Hernández-Verón and M. J. Rubio, On the convergence of secant-like methods, Current Trends in Mathematical Analysis and its Interdisciplinary Applications, 2019. DOI: 10.1007/978-3-030-15242-0_5.

    Google Scholar

    [5] I. K. Argyros, A. Magreñán, L. Orcos and J. A. Sicilia, Secant-like methods for solving nonlinear models with applications to chemistry, J. Math. Chem., 2018, 56(7), 1935–1957. doi: 10.1007/s10910-017-0824-y

    CrossRef Google Scholar

    [6] I. K. Argyros, A. Magreñán, I. Sarría and J. A. Sicilia, Improved convergence analysis of the secant method using restricted convergence domains with real-world applications, J. Nonlinear Sci. Appl., 2018, 11(11), 1215–1224. doi: 10.22436/jnsa.011.11.01

    CrossRef Google Scholar

    [7] I. K. Argyros and H. M. Ren, Achieving an extended convergence analysis for the secant method under a restricted Hölder continuity condition, SeMA J., 2021, 78(3), 335–345. doi: 10.1007/s40324-020-00234-x

    CrossRef Google Scholar

    [8] L. Cai, Z. Peng and Z. Wang, A family of global convergent inexact secant methods for nonconvex constrained optimization, J. Algorithms Comput. Technol., 2018, 12(2), 165–176. doi: 10.1177/1748301818762497

    CrossRef Google Scholar

    [9] V. Candela, N. Expósito, P. J. Martínez-Aparicio and J. C. Trillo, High order methods for nonlinear equations free of derivatives, Submitted, 2024.

    Google Scholar

    [10] V. Candela and R. Peris, A class of third order iterative Kurchatov-Steffensen (derivative free) methods for solving nonlinear equations, Applied Mathematics and Computation, 2019, 350, 93–104. doi: 10.1016/j.amc.2018.12.042

    CrossRef Google Scholar

    [11] A. Galántai and C. J. Hegedüs, Perturbation bounds for polynomials, Numer. Math., 2008, 109(1), 77–100. doi: 10.1007/s00211-007-0124-8

    CrossRef Google Scholar

    [12] L. Gardini, A. Garijo and X. Jarque, Topological properties of the immediate basins of attraction for the secant method, Mediterr. J. Math., 2021, 18(5), 221. doi: 10.1007/s00009-021-01845-y

    CrossRef Google Scholar

    [13] D. K. Gupta, J. L. Hueso, A. Kumar and E. Martínez, Convergence and dynamics of improved Chebyshev-secant-type methods for non differentiable operators, Numer. Algorithms, 2021, 86(3), 1051–1070. doi: 10.1007/s11075-020-00922-9

    CrossRef Google Scholar

    [14] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, American Mathematical Society, New York, 1949.

    Google Scholar

    [15] K. Mohamed, The performance of the secant method in the field of p-adic numbers, Malaya J. Mat., 2021, 9(2), 28–38. doi: 10.26637/mjm0902/004

    CrossRef Google Scholar

    [16] A. Sidi, Generalization of the secant method for nonlinear equations, Appl. Math. E-Notes, 2008, 8, 115–123.

    Google Scholar

    [17] P. Tang and X. Wang, A generalization of Müller iteration method based on standard information, Numer. Algorithms, 2008, 48(4), 347–359. doi: 10.1007/s11075-008-9204-9

    CrossRef Google Scholar

Figures(1)  /  Tables(2)

Article Metrics

Article views(584) PDF downloads(241) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint