Citation: | Vicente Candela, Natalia Expósito, Pedro J. Martínez−Aparicio, Juan Carlos Trillo. ON THE GENERALIZATION OF SECANT METHOD AND THE ORDER OF CONVERGENCE[J]. Journal of Applied Analysis & Computation, 2025, 15(1): 245-260. doi: 10.11948/20240082 |
In this paper we start generalizing the well known Secant and Müller methods by using higher degree polynomials. Although such generalization does already exist, we prove in an original and elegant way that the order of convergence $p$ is limited by p = 2. The techniques used in this paper could also be helpful in other contexts. We also perform some numerical experiments to reinforce the theoretical results.
[1] | M. D. S. Aliyu, A modified-secant iterative method for solving the Hamilton-Jacobi-Bellman-Isaac equations in non-linear optimal control, IET Control Theory Appl., 2016, 10(16), 2136–2141. doi: 10.1049/iet-cta.2016.0108 |
[2] | Z. Aminifard, S. Babaie-Kafaki and S. Ghafoori, An augmented memoryless BFGS method based on a modified secant equation with application to compressed sensing, Appl. Numer. Math., 2021, 167, 187–201. doi: 10.1016/j.apnum.2021.05.002 |
[3] | I. K. Argyros, D. González and H. Ren, Improved convergence ball and error analysis of Müller method, Bol. Soc. Parana. Mat., 2022, 40(3), 1–6. |
[4] |
I. K. Argyros, M. A. Hernández-Verón and M. J. Rubio, On the convergence of secant-like methods, Current Trends in Mathematical Analysis and its Interdisciplinary Applications, 2019. DOI: |
[5] | I. K. Argyros, A. Magreñán, L. Orcos and J. A. Sicilia, Secant-like methods for solving nonlinear models with applications to chemistry, J. Math. Chem., 2018, 56(7), 1935–1957. doi: 10.1007/s10910-017-0824-y |
[6] | I. K. Argyros, A. Magreñán, I. Sarría and J. A. Sicilia, Improved convergence analysis of the secant method using restricted convergence domains with real-world applications, J. Nonlinear Sci. Appl., 2018, 11(11), 1215–1224. doi: 10.22436/jnsa.011.11.01 |
[7] | I. K. Argyros and H. M. Ren, Achieving an extended convergence analysis for the secant method under a restricted Hölder continuity condition, SeMA J., 2021, 78(3), 335–345. doi: 10.1007/s40324-020-00234-x |
[8] | L. Cai, Z. Peng and Z. Wang, A family of global convergent inexact secant methods for nonconvex constrained optimization, J. Algorithms Comput. Technol., 2018, 12(2), 165–176. doi: 10.1177/1748301818762497 |
[9] | V. Candela, N. Expósito, P. J. Martínez-Aparicio and J. C. Trillo, High order methods for nonlinear equations free of derivatives, Submitted, 2024. |
[10] | V. Candela and R. Peris, A class of third order iterative Kurchatov-Steffensen (derivative free) methods for solving nonlinear equations, Applied Mathematics and Computation, 2019, 350, 93–104. doi: 10.1016/j.amc.2018.12.042 |
[11] | A. Galántai and C. J. Hegedüs, Perturbation bounds for polynomials, Numer. Math., 2008, 109(1), 77–100. doi: 10.1007/s00211-007-0124-8 |
[12] | L. Gardini, A. Garijo and X. Jarque, Topological properties of the immediate basins of attraction for the secant method, Mediterr. J. Math., 2021, 18(5), 221. doi: 10.1007/s00009-021-01845-y |
[13] | D. K. Gupta, J. L. Hueso, A. Kumar and E. Martínez, Convergence and dynamics of improved Chebyshev-secant-type methods for non differentiable operators, Numer. Algorithms, 2021, 86(3), 1051–1070. doi: 10.1007/s11075-020-00922-9 |
[14] | M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, American Mathematical Society, New York, 1949. |
[15] | K. Mohamed, The performance of the secant method in the field of p-adic numbers, Malaya J. Mat., 2021, 9(2), 28–38. doi: 10.26637/mjm0902/004 |
[16] | A. Sidi, Generalization of the secant method for nonlinear equations, Appl. Math. E-Notes, 2008, 8, 115–123. |
[17] | P. Tang and X. Wang, A generalization of Müller iteration method based on standard information, Numer. Algorithms, 2008, 48(4), 347–359. doi: 10.1007/s11075-008-9204-9 |
Two iterations of the Cubic Secant method starting with four initial points.