2025 Volume 15 Issue 6
Article Contents

Weipeng Zhang, Fengjie Geng, Xinyu Meng, Hongpeng Zhang. STOCHASTIC BIFURCATION ANALYSIS IN A SIV EPIDEMIC MODEL WITH POPULATION MIGRATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3704-3727. doi: 10.11948/20250062
Citation: Weipeng Zhang, Fengjie Geng, Xinyu Meng, Hongpeng Zhang. STOCHASTIC BIFURCATION ANALYSIS IN A SIV EPIDEMIC MODEL WITH POPULATION MIGRATION[J]. Journal of Applied Analysis & Computation, 2025, 15(6): 3704-3727. doi: 10.11948/20250062

STOCHASTIC BIFURCATION ANALYSIS IN A SIV EPIDEMIC MODEL WITH POPULATION MIGRATION

  • In this paper, we propose a stochastic SIV epidemic model with population migration and analyze its stochastic stability and bifurcation. By utilizing polar coordinate transformation, stochastic averaging method and singular boundary theory, we prove the stochastic local and global stability of the system. Moreover, we derive sufficient conditions for the system to undergo the stochastic pitchfork bifurcation and Hopf bifurcation. Finally, numerical simulations are performed to verify the theoretical results.

    MSC: 60H10, 65C20
  • 加载中
  • [1] M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 2004, 189(1), 75–96. doi: 10.1016/j.mbs.2004.01.003

    CrossRef Google Scholar

    [2] L. Arnold, Random Dynamical Systems, Springer, Berlin, 1998.

    Google Scholar

    [3] I. Bashkirtseva, Stochastic canards in a modified Leslie-Gower population model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2024, 34(15), Paper No. 2450194, 11 pp.

    Google Scholar

    [4] S. Y. Cai, Y. M. Cai and X. R. Mao, A stochastic differential equation SIS epidemic model with two independent brownian motions, J. Math. Anal. Appl., 2019, 474(2), 1536–1550. doi: 10.1016/j.jmaa.2019.02.039

    CrossRef Google Scholar

    [5] S. Gao and X. Q. Sun, The global dynamics for a stochastic SIR epidemic model with vaccination, J. Nonl. Mod. Anal., 2024, 6(4), 1091–1121.

    Google Scholar

    [6] X. Q. He, M. Liu and X. F. Xu, Dynamic analysis of stochastic spruce budworm differential model with time delay, J. Nonl. Mod. Anal., 2022, 4(4), 677–685.

    Google Scholar

    [7] W. W. Hou and M. A. Han, Limit cycle bifurcations in a class of piecewise Hamiltonian systems, Commun. Nonlinear Sci. Numer. Simul., 2025, 143, Paper No. 108643, 28 pp.

    Google Scholar

    [8] J. C. Huang, M. Lu, C. Xiang and L. Zou, Bifurcations of codimension 4 in a Leslie-type predator-prey model with Allee effects, J. Differential Equations, 2025, 414, 201–241. doi: 10.1016/j.jde.2024.09.009

    CrossRef Google Scholar

    [9] Z. T. Huang, Q. G. Yang and J. F. Cao, Stochastic stability and bifurcation for the chronic state in marchuk's model with noise, Appl. Math. Model., 2011, 35(12), 5842–5855. doi: 10.1016/j.apm.2011.05.027

    CrossRef Google Scholar

    [10] Z. J. Kan, J. Wang, J. C. Zhang and J. C. Niu, Random P-bifurcation in a Duffing–van der Pol vibro-impact system with a Bingham model, Chaos, 2025, 35(2), Paper No. 023127, 19 pp.

    Google Scholar

    [11] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 1927, 115, 700–721. doi: 10.1098/rspa.1927.0118

    CrossRef Google Scholar

    [12] R. Z. Khasminskii, On the principle of averaging the Ito's stochastic differential equations, Kybernetika, 1968, 4, 260–279.

    Google Scholar

    [13] S. Kirkland, Z. S. Shuai, P. van den Driessche and X. Y. Wang, Impact of varying community networks on disease invasion, SIAM J. Appl. Math., 2021, 81(3), 1166–1189. doi: 10.1137/20M1328762

    CrossRef Google Scholar

    [14] Y. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 1995.

    Google Scholar

    [15] A. Lahrouz, T. Caraballo, I. Bouzalmat and A. Settati, Randomness suppress backward bifurcation in an epidemic model with limited medical resources, Commun. Nonlinear Sci. Numer. Simul., 2025, 140, Paper No. 108380, 17 pp.

    Google Scholar

    [16] G. H. Li and W. D. Wang, Bifurcation analysis of an epidemic model with nonlinear incidence, Appl. Math. Comput., 2009, 214(2), 411–423.

    Google Scholar

    [17] G. Lin, X. J. Wang and X. Q. Zhao, Propagation phenomena of a vector-host disease model, J. Differential Equations, 2024, 378, 757–791.

    Google Scholar

    [18] W. L. Liu, H. P. Zhang, W. P. Zhang and X. N. Sun, Dynamical behaviors of a tumor-immune-vitamin model with random perturbation, J. Appl. Anal. Comput., 2023, 13(5), 2739–2766.

    Google Scholar

    [19] Y. B. Liu, J. L. Li and D. P. Kuang, Dynamics of a stochastic SIR epidemic model with logistic growth, J. Nonl. Mod. Anal., 2023, 5(1), 73–94.

    Google Scholar

    [20] Y. L. Ma, Y. F. Wei, T. T. Liu and X. W. Yu, Bifurcation dynamics in a stochastic population model with Beverton-Holt growth, Appl. Math. Lett., 2024, 148, Paper No. 108892, 7 pp.

    Google Scholar

    [21] A. M. S. Mahdy, M. S. Mohamed, K. Lotfy, M. Alhazmi, A. A. El-Bary and M. H. Raddadi, Numerical solution and dynamical behaviors for solving fractional nonlinear rubella ailment disease model, Results Phys., 2021, 24, 104091.

    Google Scholar

    [22] X. R. Mao, Stochastic Differential Equations and Applications, Second Edition, Horwood Publishing, Chichester, 2008.

    Google Scholar

    [23] F. S. Mousavinejad, M. Fatehi Nia and A. Ebrahimi, P-bifurcation of stochastic van der Pol model as a dynamical system in neuroscience, Commun. Appl. Math. Comput., 2022, 4(4), 1293–1312.

    Google Scholar

    [24] N. S. Namachchivaya, Stochastic bifurcation, Appl. Math. Comput., 1990, 38, 101–159.

    Google Scholar

    [25] M. F. Nia and M. H. Akrami, Stability and bifurcation in a stochastic vocal folds model, Commun. Nonlinear Sci. Numer. Simul., 2019, 79, Paper No. 104898, 12 pp.

    Google Scholar

    [26] M. Fatehi Nia and N. Khajuee, Stability and bifurcation of stochastic chemostat model, J. Math. Model., 2023, 11(2), 375–394.

    Google Scholar

    [27] I. T. Nkounga, Y. Xia, S. Yanchuk, R. Yamapi and J. Kurths, Generalized FitzHugh-Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations, Chaos, Solitons Fractals, 2023, 175, Paper No. 114020, 11 pp.

    Google Scholar

    [28] V. I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic exponents for dynamical systems, Trans. Moscow Math. Soc., 1968, 19, 197–231.

    Google Scholar

    [29] J. M. Qian and L. C. Chen, Stochastic P-bifurcation analysis of a novel type of unilateral vibro-impact vibration system, Chaos Solitons Fractals, 2021, 149, Paper No. 111112, 5 pp.

    Google Scholar

    [30] Z. F. Shi and D. Q. Jiang, Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein–Uhlenbeck, Chaos Solitons Fractals, 2022, 165, Paper No. 112789, 15 pp.

    Google Scholar

    [31] X. B. Sun, Y. Tian and M. A. Han, Homoclinic bifurcation near a loop tangent to an invariant straight line, J. Differential Equations, 2025, 425, 157–189.

    Google Scholar

    [32] G. T. Tilahun, T. M. Tolasa, and G. A. Wole, Modeling the dynamics of rubella disease with vertical transmission, Heliyon, 2022, 8(11), Article e11797.

    Google Scholar

    [33] U. V. Wagner and W. V. Wedig, On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions, Nonlinear Dynam., 2000, 21, 289–306.

    Google Scholar

    [34] M. L. Wang, Z. C. Wei, J. X. Wang, X. Yu and T. Kapitaniak, Stochastic bifurcation and chaos study for nonlinear ship rolling motion with random excitation and delayed feedback controls, Phys. D, 2024, 462, Paper No. 134147, 15 pp.

    Google Scholar

    [35] W. F. L. Wolfgang, H. Kliemann and N. S. Namachchivaya, Nonlinear Dynamics and Stochastic Mechanics, American Mathematical Society, 1996.

    Google Scholar

    [36] H. Wu, Q. B. Wang, C. Q. Zhang, Z. K. Han and R. L. Tian, Stochastic bifurcations of nonlinear vibroimpact system with time delay and fractional derivative excited by gaussian white noise, Commun. Nonlinear Sci. Numer. Simul., 2023, 124, Paper No. 107304, 15 pp.

    Google Scholar

    [37] X. M. Wu and S. L. Yuan, Dynamics behavior of a stochastic predator-prey model with stage structure for predator and Lévy jumps, J. Nonl. Mod. Anal., 2023, 5(2), 394–414.

    Google Scholar

    [38] Y. N. Xiao and S. Y. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model, Nonlinear Anal. Real World Appl., 2010, 11(5), 4154–4163.

    Google Scholar

    [39] H. B. Yang, X. Y. Li and W. P. Zhang, A stochastic HIV/HTLV-I co-infection model incorporating the AIDS-related cancer cells, Discrete Contin. Dyn. Syst. Ser. B, 2024, 29(2), 702–730.

    Google Scholar

    [40] X. F. Zhang and R. Yuan, Stochastic bifurcation and density function analysis of a stochastic logistic equation with distributed delay and weak kernel, Math. Comput. Simulation, 2022, 195, 56–70.

    Google Scholar

    [41] Y. H. Zhang and P. F. Song, Dynamics of the piecewise smooth epidemic model with nonlinear incidence, Chaos Solitons Fractals, 2021, 146, Paper No. 110903, 7 pp.

    Google Scholar

    [42] W. Q. Zhu, Nonlinear Stochastic Dynamics and Control: Hamilton Theory System Frame, Beijing Science Press, Beijing, 2003.

    Google Scholar

    [43] X. L. Zou, Y. T. Zheng, L. R. Zhang and J. L. Lv, Survivability and stochastic bifurcations for a stochastic Holling type Ⅱ predator-prey model, Commun. Nonlinear Sci. Numer. Simul., 2020, 83, Paper No. 105136, 20 pp.

    Google Scholar

Figures(12)  /  Tables(2)

Article Metrics

Article views(93) PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint