2026 Volume 16 Issue 1
Article Contents

Chenkai Guo, Peng Wu. THE PERSISTENCE OF AN AGE-STRUCTURED SYPHILIS MODEL[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 296-311. doi: 10.11948/20250094
Citation: Chenkai Guo, Peng Wu. THE PERSISTENCE OF AN AGE-STRUCTURED SYPHILIS MODEL[J]. Journal of Applied Analysis & Computation, 2026, 16(1): 296-311. doi: 10.11948/20250094

THE PERSISTENCE OF AN AGE-STRUCTURED SYPHILIS MODEL

  • Syphilis, a highly infectious bacterial infection, poses a significant health threat globally due to its high morbidity and mortality rates. Predominantly transmitted through sexual contact, the age distribution among hosts plays a pivotal role in the disease transmission dynamics. In this paper, we first formulate an age-structured epidemic model with four infection stages (primary, secondary, latent and tertiary) and then derive the explicit expression of the basic reproduction number by using the next generation equation. According to the definition of the persistence and applying advanced mathematical techniques, including multiple integral reordering, variable transformations, Laplace transforms, and the method of contradiction, we not only prove the weak persistence but also the strong persistence of the disease.

    MSC: 92D30, 35B40, 58Z05
  • 加载中
  • [1] D. Blackwell and L. Dubins, A converse to the dominated convergence theorem, Illinois J. Math., 1963, 7, 508-514.

    Google Scholar

    [2] M. Cao, J. Zhao, J. Wang and R. Zhang, Dynamical analysis of a reaction-diffusion vector-borne disease model incorporating age-space structure and multiple transmission routes, Commun. Nonlinear Sci. Numer. Simulat., 2023, 127, 107550. doi: 10.1016/j.cnsns.2023.107550

    CrossRef Google Scholar

    [3] V. V. Capasso, Mathematical Structures of Epidemic Systems, New York, NY: Springer Science & Business Media, 2008.

    Google Scholar

    [4] G. Chen, Disease persistence for a kind of age-structured epidemic models, Appl. Math. J. Chinese Univ. Ser. A, 2007, 22, 253-262. doi: 10.1007/s11766-007-0301-7

    CrossRef Google Scholar

    [5] Z. Feng, W. Huang and C. Castillo-Chavez, Global behavior of a multi-group SIS epidemic model with age structure, J. Differential Equations, 2005, 218, 292-324. doi: 10.1016/j.jde.2004.10.009

    CrossRef Google Scholar

    [6] H. Freedman and P. Moson, Persistence definitions and their connections, Proc. Amer. Math. Soc., 1990, 109, 1025-1033. doi: 10.1090/S0002-9939-1990-1012928-6

    CrossRef Google Scholar

    [7] H. Freedman, S. Ruan and M. Tang, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Differ. Equations, 1994, 6, 583-600. doi: 10.1007/BF02218848

    CrossRef Google Scholar

    [8] A. Gumel, J. Lubuma, O. Sharomi and Y. Terefe, Mathematics of a sex-structured model for syphilis transmission dynamics, Math. Methods Appl. Sci., 2017, 23, 1-26.

    Google Scholar

    [9] J. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 1989, 20, 388-395. doi: 10.1137/0520025

    CrossRef Google Scholar

    [10] J. Huang, H. Kang, M. Liu, S. Ruan and W. Zhuo, Stability analysis of an age-structured epidemic model with vaccination and standard incidence rate, Nonlinear Anal. RWA, 2022, 62, 103525.

    Google Scholar

    [11] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math. Monographs C. N. R., Vol. 7, Pisa: Giadini Editori e Stampatori, 1994.

    Google Scholar

    [12] E. Iboi and D. Okuonghae, Population dynamics of a mathematical model for syphilis, Appl. Math. Model., 2016, 40, 3573-3590. doi: 10.1016/j.apm.2015.09.090

    CrossRef Google Scholar

    [13] H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology, New York, NY: Springer, 2017.

    Google Scholar

    [14] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 1927, 115, 700-721. doi: 10.1098/rspa.1927.0118

    CrossRef Google Scholar

    [15] A. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 1926, 44, 98-130.

    Google Scholar

    [16] K. Okuwa, H. Inaba and T. Kunyia, Mathematical analysis for an age-structured SIRS epidemic model, Math. Biosci. Eng., 2019, 16, 6071-6102. doi: 10.3934/mbe.2019304

    CrossRef Google Scholar

    [17] H. Thieme, Disease extinction and disease persistence in age structured epidemic models, Nonlinear Anal., 2001, 47, 6181-6194. doi: 10.1016/S0362-546X(01)00677-0

    CrossRef Google Scholar

    [18] J. Wang, J. Lang and X. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal. RWA, 2017, 34, 75-96. doi: 10.1016/j.nonrwa.2016.08.001

    CrossRef Google Scholar

    [19] G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, New York, NY: Marcel Dekker, 1985.

    Google Scholar

    [20] P. Wu and C. Fang, Spatiotemporal dynamics of syphilis in Xinjiang via a demographic-geographic data-validated reaction diffusion model, J. Math. Phys., 2025, 66, 062704. doi: 10.1063/5.0273893

    CrossRef Google Scholar

    [21] P. Wu and S. Ruan, An age-structured syphilis model, Ⅱ: Optimal control and numerical simulation, Proc. R. Soc. A, 2025, 481. DOI: 10.1098/rspa.2023.0809.

    CrossRef Google Scholar

    [22] P. Wu, X. Wang and H. Wang, Spatial heterogeneity analysis for syphilis in China via a data-validated reaction-diffusion model, Math. Biosci., 2024, 375, 109243. doi: 10.1016/j.mbs.2024.109243

    CrossRef Google Scholar

    [23] P. Wu, L. Zou and S. Ruan, An age-structured syphilis model, I: Wellposedness and stability, Proc. R. Soc. A, 2025, 481. DOI: 10.1098/rspa.2024.0218.

    CrossRef Google Scholar

    [24] T. Yuan, G. Guan, S. Shen and L. Zhu, Stability analysis and optimal control of epidemic-like transmission model with nonlinear inhibition mechanism and time delay in both homogeneous and heterogeneous networks, J. Math. Anal. Appl., 2023, 526, 127273. doi: 10.1016/j.jmaa.2023.127273

    CrossRef Google Scholar

    [25] R. Zhang and X. Ren, Lyapunov functions for some epidemic model with high risk and vaccinated class, Appl. Math. Lett., 2025, 163, 109437. doi: 10.1016/j.aml.2024.109437

    CrossRef Google Scholar

    [26] X. Zhang, S. Li, Y. Yuan, et al., Effect of discontinuous harvesting on a diffusive predator-prey model, Nonlinearity, 2024, 37, 115016. doi: 10.1088/1361-6544/ad7fc3

    CrossRef Google Scholar

    [27] Z. Zhang, D. Wu and N. Li, Predator invasion in a spatially heterogeneous predator-prey model with group defense and prey-taxis, Math. Comput. Simulation, 2024, 226, 270-282. doi: 10.1016/j.matcom.2024.07.014

    CrossRef Google Scholar

    [28] X. Zhao, Dynamical Systems in Population Biology, 2nd Ed., New York, NY: Springer, 2017.

    Google Scholar

    [29] L. Zhi, J. Yang and M. Martcheva, Age structured epidemic modeling, Springer Nature, 2020, 52.

    Google Scholar

    [30] L. Zhu, Y. Ding and S. Shen, Green behavior propagation analysis based on statistical theory and intelligent algorithm in data-driven environment, Math. Biosci., 2025, 379, 109340. doi: 10.1016/j.mbs.2024.109340

    CrossRef Google Scholar

    [31] L. Zou, S. Ruan and W. Zhang, An age-structured model for the transmission dynamics of Hepatitis B, SIAM J. Appl. Math., 2010, 70, 3121-3139. doi: 10.1137/090777645

    CrossRef Google Scholar

Article Metrics

Article views(43) PDF downloads(12) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint