[1]
|
A. M. Al-Dubiban, Iterative algorithm for solving a system of nonlinear matrix equations, J. Appl. Math., 2012. DOI:10. 1155/2012/461407.
CrossRef Google Scholar
|
[2]
|
A. M. Al-Dubiban, On the iterative method for the system of nonlinear matrix equations, Abst. Appl. Anal., 2013. DOI:10. 1155/2013/685753.
CrossRef Google Scholar
|
[3]
|
W. N. Anderson, Jr., T. D. Morley, G. E. Trapp, Positive solutions to $X=A-BX.^{-1}B.*$, Linear Algebra Appl., 1990, 134, 53-62. doi: 10.1016/0024-3795(90)90005-W
CrossRef Google Scholar
|
[4]
|
J. H. Bevis, F. J. Hall and R. E. Hartwing, Consimilarity and the matrix equation $A\bar{X}-XB = C$, Current Trends in Matrix Theory, North-Holland, New York, 1987, 51-64.
Google Scholar
|
[5]
|
J. H. Bevis, F. J. Hall and R. E. Hartwing, The matrix equation $A\bar{X}-XB=C$and its special cases, SIAM J. Matrix Anal. Appl., 1998, 9, 348-359.
Google Scholar
|
[6]
|
J. Cai and G. Chen, On the Hermitian positive definite solutions of nonlinear matrix equation $X^s+A^*X^{-t}A = Q$, Appl. Math. Comput., 2010, 217, 117-123.
Google Scholar
|
[7]
|
C. Y. Chiang, Eric K. W. Chu and W. W. Lin, On the H-Sylvester equation $AX\pm X^*B^*=C$, Appl. Math. Comput., 2012, 218, 8393-8407.
Google Scholar
|
[8]
|
F. Ding and T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 2006, 44, 2269-2284. doi: 10.1137/S0363012904441350
CrossRef Google Scholar
|
[9]
|
F. Ding, P. X. Liu and J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 2008, 197, 41-50.
Google Scholar
|
[10]
|
F. Ding, System Identification-new Theory and Methods, Science Press, Beijing, 2013.
Google Scholar
|
[11]
|
X. F. Duan, C. Li and A. P. Liao, Solutions and perturbation analysis for the nonlinear matrix equation $X+\sum\limits_{i=1}^mA^*_iX^{-1}A_i=I$, Appl. Math. Comput., 2011, 218, 4458-4466.
Google Scholar
|
[12]
|
S. M. El-sayed, Two iteration processes for computing positive definite solutions of the equation $X- A^*X^{-n}A = Q$, Comput. Math. Appl., 2001, 41, 579-588. doi: 10.1016/S0898-1221(00)00301-1
CrossRef Google Scholar
|
[13]
|
S. M. El-sayed and A. M. Al-Dbiban, A new inversion free iteration for solving the equation $X+A^TX^{-1}A = Q$, J. Comput. Appl. Math., 2005, 181, 148-156. doi: 10.1016/j.cam.2004.11.025
CrossRef Google Scholar
|
[14]
|
J. C. Engwerda, A. C. M. Ran and A. L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X +A^*X^{-1}A = Q$, Linear Algebra Appl., 1993, 186, 255-275. doi: 10.1016/0024-3795(93)90295-Y
CrossRef Google Scholar
|
[15]
|
A. Ferrante and B. C. Levy, Hermitian solution of the equation $X = Q-NX^{-1}N^*$, Linear Algebra Appl., 1996, 247, 359-373. doi: 10.1016/0024-3795(95)00121-2
CrossRef Google Scholar
|
[16]
|
C. H. Guo and W. W. Lin, The matrix equation $X+A^TX^{-1}A = Q$ and its application in nano research, SIAM J. Sci. Comput., 2010, 32, 3020-3038. doi: 10.1137/090758209
CrossRef Google Scholar
|
[17]
|
C. H. Guo, Y. C. Kuo and W. W. Lin, Complex symmetric stabilizing solution of the matrix equation $X + A^TX^{-1}A = Q$, Linear Algebra Appl., 2011, 435, 1187-1192. doi: 10.1016/j.laa.2011.03.034
CrossRef Google Scholar
|
[18]
|
L. Guo, L. Liu, Y. Wu, Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Anal. Model. Control, 2015, 21, 635-650.
Google Scholar
|
[19]
|
M. Han, L. Sheng, X. Zhang, Bifurcation theory for finitely smooth planar autonomous differential systems, J. Differ. Equations, 2018, 264, 3596-3618. doi: 10.1016/j.jde.2017.11.025
CrossRef Google Scholar
|
[20]
|
M. Han, X. Hou, L. Sheng, C. Wang, Theory of rotated equations and applications to a population model, Discrete Cont. Dyn. Syst. -A, 2018, 38, 2171-2185. doi: 10.3934/dcds.2018089
CrossRef Google Scholar
|
[21]
|
V. Hasanov and I. G. Ivanov, Solutions and perturbation estimates for the matrix equations $X \pm A^*X^{-n}A = Q$, Appl Math Comput., 2004, 156, 513-525.
Google Scholar
|
[22]
|
N. Huang and C. F. Ma, The structure-preserving doubling algorithms for positive definite solution to a system of nonlinear matrix equations, Linear Multilinear Algebra, 2018, 66, 827-839. doi: 10.1080/03081087.2017.1329270
CrossRef Google Scholar
|
[23]
|
N. Huang and C. F. Ma, Two structure-preserving-doubling like algorithms for obtaining the positive definite solution to a class of nonlinear matrix equation, Comput. Math. Appl., 2015, 69, 494-502. doi: 10.1016/j.camwa.2015.01.008
CrossRef Google Scholar
|
[24]
|
I. G. Ivanov and S. M. El-sayed, Properties of positive definite solutions of the equation $X+A^*X^{-2}A =I$, Linear Algebra Appl., 1998, 279, 303-316. doi: 10.1016/S0024-3795(98)00023-8
CrossRef Google Scholar
|
[25]
|
T. S. Jiang, C. H. Cheng and L. Chen, An algebraic relation between consimilarity and similarity of complex matrices and its applications, Physica A, 2006, 38, 9215-9222.
Google Scholar
|
[26]
|
T. S. Jiang and M. S. Wei, On solutions of the matrix equations $X -AXB = C$ and $X -A \bar{X}B = C$, Linear Algebra Appl., 2003, 367, 225-233. doi: 10.1016/S0024-3795(02)00633-X
CrossRef Google Scholar
|
[27]
|
F. Li, G. Du, General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback, J. Appl. Anal. Comput., 2018, 8, 390-401.
Google Scholar
|
[28]
|
M. Li, J. Wang, Exploring delayed mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 2018, 324, 254-265.
Google Scholar
|
[29]
|
A. J. Liu, G. L. Chen, On the Hermitian positive definite solutions of nonlinear matrix equation $X^s+\sum\limits_{i=1}^{m}A_i^*X^{-t_i}A_i=Q$, Appl. Math. Comput., 2014, 243, 950-959.
Google Scholar
|
[30]
|
A. J. Liu, G. L. Chen, X. Y. Zhang, A new method for the bisymmetric minimum norm solution of the consistent matrix equations $A_1XB_1=C_1, A_2XB_2=C_2$, J. Appl. Math., Vol. 2013, Article ID 125687, 6 pages.
Google Scholar
|
[31]
|
Z. Y. Li, B. Zhou and J. Lam, Towards positive definite solutions of a class of nonlinear matrix equations, Appl. Math. Comput., 2014, 237, 546-559.
Google Scholar
|
[32]
|
W. W. Lin and S. F. Xu, Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations, SIAM J. Matrix Anal. Appl., 2006, 29, 26-39.
Google Scholar
|
[33]
|
B. Meini, Efficient computation of the extreme solutions of $X +A^*X^{-1}A = Q$ and $X -A^*X^{-1}A = Q$, Math. Comput., 2001, 71, 1189-1204. doi: 10.1090/S0025-5718-01-01368-0
CrossRef Google Scholar
|
[34]
|
M. Monsalve and M. Raydan, A new inversion-free method for a rational matrix equation, Linear Algebra Appl., 2010, 433, 64-71. doi: 10.1016/j.laa.2010.02.006
CrossRef Google Scholar
|
[35]
|
L. Ren, J. Xin, Almost global existence for the Neumann problem of quasilinear wave equations outside star-shaped domains in 3D, Electron J. Differ. Equations, 2018, 31, 1-22.
Google Scholar
|
[36]
|
H. Tian, M. Han, Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems, J. Differ. Equations, 2017, 263, 7448-7474. doi: 10.1016/j.jde.2017.08.011
CrossRef Google Scholar
|
[37]
|
B. Wang, F. Meng, Y. Fang, Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations, Appl. Numer. Math., 2017, 119, 164-178. doi: 10.1016/j.apnum.2017.04.008
CrossRef Google Scholar
|
[38]
|
B. Wang, X. Wu, F. Meng, Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations, J. Comput. Appl. Math., 2017, 313, 185-201. doi: 10.1016/j.cam.2016.09.017
CrossRef Google Scholar
|
[39]
|
B. Wang, Exponential Fourier collocation methods for solving first-order differential equations, J. Comput. Appl. Math., 2017, 35, 711-736.
Google Scholar
|
[40]
|
S. F. Xu, Matrix Computation in Control Theory (in Chinese), Higher Education Press, Beijing, 2011.
Google Scholar
|
[41]
|
X. Y. Yin and S. Y. Liu, Positive definite solutions of the matrix equations $X \pm A^*X^{-q}A = Q ~(q \geq1)$, Comput. Math. Appl., 2010, 59, 3727-3739. doi: 10.1016/j.camwa.2010.04.005
CrossRef Google Scholar
|
[42]
|
B. Zhou, G. B. Cai and J. Lam, Positive definite solutions of the nonlinear matrix equation $X +A^H\bar{X}^{-1}A = I$, Appl. Math. Comput., 2013, 219, 7377-7391.
Google Scholar
|
[43]
|
B. Zhou, G. R. Duan and Z. Li, Gradient based iterative algorithm for solving coupled matrix equations, Syst. Control Lett., 2009, 58, 327-333. doi: 10.1016/j.sysconle.2008.12.004
CrossRef Google Scholar
|
[44]
|
B. Zhou, J. Lam and G. Duan, On Smith-type iterative algorithms for the Stein matrix equation, Appl. Math. Lett., 2009, 22, 1038-1044. doi: 10.1016/j.aml.2009.01.012
CrossRef Google Scholar
|
[45]
|
B. Zhou, J. Lam and G. Duan, Toward solution of matrix equation $X=Af (X)+B$, Linear Algebra Appl., 2011, 435, 1370-1398. doi: 10.1016/j.laa.2011.03.003
CrossRef Google Scholar
|