[1]
|
R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 2010, 109, 973-1033. doi: 10.1007/s10440-008-9356-6
CrossRef Google Scholar
|
[2]
|
B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value peoblems involving fractional differential equations, Nonlinear Anal:HS., 2009, 3, 251-258.
Google Scholar
|
[3]
|
M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009, 8, 1-14.
Google Scholar
|
[4]
|
M. Benchohra, J. Henderson and S. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and its Applications, Hindawi Publ.Corp. 2006.
Google Scholar
|
[5]
|
Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495-505. doi: 10.1016/j.jmaa.2005.02.052
CrossRef Google Scholar
|
[6]
|
K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ., 2010, 4, 1-12.
Google Scholar
|
[7]
|
P. Chen and J. Mu, Monotone iterative method for semilinear impulsive evolution equations of mixed type in Banach spaces, Electron. J. Differential Equations., 2010, 2010(149), 1-13.
Google Scholar
|
[8]
|
P. Chen and Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 2011, 74(2011), 3578-3588.
Google Scholar
|
[9]
|
P. Y. Chen, X. P. Zhang and Y. X. Li, Fractional non-autonomous evolution equation with nonlocal conditions, Journal of Pseudo-Differential Operators and Applications.
Google Scholar
|
[10]
|
P. Y. Chen, X. P. Zhang and Y. X. Li, Approximation Technique for Fractional Evolution Equations with Nonlocal Integral Conditions, Mediterr. J. Math., 2017, 14(6), 214-226.
Google Scholar
|
[11]
|
P. Y. Chen, X. P. Zhang and Y. X. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 2017, 73(5), 794-803. doi: 10.1016/j.camwa.2017.01.009
CrossRef Google Scholar
|
[12]
|
P. Y. Chen and Y. X. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 2014, 65(4), 711-728. doi: 10.1007/s00033-013-0351-z
CrossRef Google Scholar
|
[13]
|
P. Chen, Y. Li, Q. Chen and B. Feng, On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl., 2014, 67, 1108-1115. doi: 10.1016/j.camwa.2014.01.002
CrossRef Google Scholar
|
[14]
|
P. Y. Chen and Y. X. Li, Iterative Method for a New Class of Evolution Equations with Non-instantaneous Impulses, Taiwanese J. Math., 2017, 21(4), 913-942. doi: 10.11650/tjm/7912
CrossRef Google Scholar
|
[15]
|
P. Y. Chen and Y. X. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 2018, 17(5), 1975-1992. doi: 10.3934/cpaa.2018094
CrossRef Google Scholar
|
[16]
|
K. Deiling, Nonlinear Functional Anaiysis, Springer-Verlag, New York, 1985.
Google Scholar
|
[17]
|
S. Du and V. Lakshmikantham, Monotone iterative technique for differential equtions in Banach spaces, J. Math. Anal. Appl., 1982, 87, 454-459. doi: 10.1016/0022-247X(82)90134-2
CrossRef Google Scholar
|
[18]
|
M. A. EI-Gebeily, D. O. Regan and J. J. Nieto, A monotone iterative technique for stationary and time dependent problems in Banach spaces, J. Comput. Appl. Math., 2010, 233, 2359-2404.
Google Scholar
|
[19]
|
Y. Du, Fixed points of increasing operators in Banach spaces and applications, Appl. Anal., 1990, 38, 1-20. doi: 10.1080/00036819008839957
CrossRef Google Scholar
|
[20]
|
M. Fečkan, Y. Zhou and J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Communn Nonlinear Sci Numer Simul., 2012, 17, 3050-3060. doi: 10.1016/j.cnsns.2011.11.017
CrossRef Google Scholar
|
[21]
|
D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operator with applications, Nonlinear Anal., 1987, 11, 623-632. doi: 10.1016/0362-546X(87)90077-0
CrossRef Google Scholar
|
[22]
|
D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro differential equations in Banach spaces, J. Math. Anal. Appl., 1993, 177, 538-552. doi: 10.1006/jmaa.1993.1276
CrossRef Google Scholar
|
[23]
|
D. J. Guo and J. X. Sun, Ordinary Differential Equations in Abstract Spaces, Shandong Science and Technology. Jinan, (1989) (in Chinese)
Google Scholar
|
[24]
|
H. R. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 1983, 71, 1351-1371.
Google Scholar
|
[25]
|
Y. Li and Z. Liu, Monotone iterative technique for addressing impulsive integrodifferential equations in Banach spaces, Nonlinear Anal., 2007, 66, 83-92. doi: 10.1016/j.na.2005.11.013
CrossRef Google Scholar
|
[26]
|
Y. Li, The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin., 1996, 39(5), 666-672. (in Chinese)
Google Scholar
|
[27]
|
B. Li and H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals., 2018, 110, 209-215. doi: 10.1016/j.chaos.2018.03.027
CrossRef Google Scholar
|
[28]
|
J. Mu and Y. Li, Monotone interative technique for impulsive fractional evolution equations, Journal of Inequalities and Applications., 2011, 125.
Google Scholar
|
[29]
|
J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Boundary Value Problem, 2012, 71.
Google Scholar
|
[30]
|
A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983.
Google Scholar
|
[31]
|
M. H. M. Rashid, A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation, Commun Nonlinear Sci Numer Simul., 2011, 16, 3493-503. doi: 10.1016/j.cnsns.2010.12.043
CrossRef Google Scholar
|
[32]
|
J. Sun and Z. Zhao, Extremal solutions of initial value problem for integrodifferential equations of mixed type in Banach spaces, Ann. Differential Equations., 1992, 8, 469-475.
Google Scholar
|
[33]
|
X. B. Shu and F. Xu, Upper and lower solution method for fractional evolution equations with order 1 < α < 2, J. Korean Math. Soc., 2014, 51(6), 1123-1139. doi: 10.4134/JKMS.2014.51.6.1123
CrossRef Google Scholar
|
[34]
|
X. B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 2011, 74(5), 2003- 2011. doi: 10.1016/j.na.2010.11.007
CrossRef Google Scholar
|
[35]
|
X. B. Shu and Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Applied Mathematics and Computation., 2016, 273, 465- 476. doi: 10.1016/j.amc.2015.10.020
CrossRef Google Scholar
|
[36]
|
X. B. Shu and Q. Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2, Computers and Mathematics with Applications., 2012, 64, 2100-2110. doi: 10.1016/j.camwa.2012.04.006
CrossRef Google Scholar
|
[37]
|
G. Wang, L. Zhang and G. Song, Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal: TMA., 2011, 74, 974-982. doi: 10.1016/j.na.2010.09.054
CrossRef Google Scholar
|
[38]
|
J. Wang, Y. Zhou and M. Fečkan, On recent developments in the theory of boundary value problems for impulsive fractional differentail equations, Computers and Mathematics with Applications., 2012, 64, 3008-3020. doi: 10.1016/j.camwa.2011.12.064
CrossRef Google Scholar
|
[39]
|
J. Wang, M. Fečkan and Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J Math Anal Appl., 2012, 395, 258-264. doi: 10.1016/j.jmaa.2012.05.040
CrossRef Google Scholar
|
[40]
|
J. Wang, X. Li and W. Wei, On the natural solution of an impulsive fractional differential equation of order q∈(1,2), Commun Nonlinear Sci Numer Simul., 2012, 17, 4384-4394. doi: 10.1016/j.cnsns.2012.03.011
CrossRef Google Scholar
|
[41]
|
L. Wang and Z. Wang, Monotone iterative technique for parameterized BVPs of abstract semilinear evolution equations, Comput. Math. Appl., 2003, 46, 1229-1243. doi: 10.1016/S0898-1221(03)90214-8
CrossRef Google Scholar
|
[42]
|
J. Wang, M. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 2011, 8, 345-361. doi: 10.4310/DPDE.2011.v8.n4.a3
CrossRef Google Scholar
|
[43]
|
J. Wang, Y. Zhou and M. Fečkan, Alternative results and robustness for fractional evolution equations with periodic boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2011, 97, 1-15.
Google Scholar
|
[44]
|
X. Wang and X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order 1 < α < 2, Adv. Difference Equ. 2015, 2015: 159, 15 pp.
Google Scholar
|
[45]
|
H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its applications to a fractional differential equation, J. Math. Anal. Appl., 2007, 328, 1075-1081. doi: 10.1016/j.jmaa.2006.05.061
CrossRef Google Scholar
|
[46]
|
Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comp. Math. Appl, 2010, 59, 1063-1077. doi: 10.1016/j.camwa.2009.06.026
CrossRef Google Scholar
|