2019 Volume 9 Issue 4
Article Contents

Yongxiang Li, Haide Gou. MIXED MONOTONE ITERATIVE TECHNIQUE FOR SEMILINEAR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1216-1241. doi: 10.11948/2156-907X.20180202
Citation: Yongxiang Li, Haide Gou. MIXED MONOTONE ITERATIVE TECHNIQUE FOR SEMILINEAR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS[J]. Journal of Applied Analysis & Computation, 2019, 9(4): 1216-1241. doi: 10.11948/2156-907X.20180202

MIXED MONOTONE ITERATIVE TECHNIQUE FOR SEMILINEAR IMPULSIVE FRACTIONAL EVOLUTION EQUATIONS

  • Author Bio: liyxnwnu@163.com (Y. Li)
  • Corresponding author: Email address:842204214@qq.com(H. Gou)
  • Fund Project: The authors were supported by National Natural Science Foundation of China(11661071)
  • In this paper, we deals with the existence of mild $ L $-quasi-solutions to the boundary value problem for a class of semilinear impulsive fractional evolution equations in an ordered Banach space $ E $. Under a new concept of upper and lower solutions, a new monotone iterative technique on the initial value problem of impulsive fractional evolution equations has been established. The results improve and extend some relevant results in ordinary differential equations and partial differential equations. As some application that illustrate our results, An example is also given.
    MSC: 26A33, 34K30, 34K45, 35B10
  • 加载中
  • [1] R. P. Agarwal, M. Benchohra and S. Hamani, A survey on existence result for boundary value problem of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 2010, 109, 973-1033. doi: 10.1007/s10440-008-9356-6

    CrossRef Google Scholar

    [2] B. Ahmad and S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value peoblems involving fractional differential equations, Nonlinear Anal:HS., 2009, 3, 251-258.

    Google Scholar

    [3] M. Benchohra and D. Seba, Impulsive fractional differential equations in Banach spaces, Electron. J. Qual. Theory Differ. Equ., 2009, 8, 1-14.

    Google Scholar

    [4] M. Benchohra, J. Henderson and S. Ntouyas, Impulsive differential equations and inclusions, Contemporary Mathematics and its Applications, Hindawi Publ.Corp. 2006.

    Google Scholar

    [5] Z. Bai and H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495-505. doi: 10.1016/j.jmaa.2005.02.052

    CrossRef Google Scholar

    [6] K. Balachandran and S. Kiruthika, Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electron. J. Qual. Theory Differ. Equ., 2010, 4, 1-12.

    Google Scholar

    [7] P. Chen and J. Mu, Monotone iterative method for semilinear impulsive evolution equations of mixed type in Banach spaces, Electron. J. Differential Equations., 2010, 2010(149), 1-13.

    Google Scholar

    [8] P. Chen and Y. Li, Mixed monotone iterative technique for a class of semilinear impulsive evolution equations in Banach spaces, Nonlinear Anal., 2011, 74(2011), 3578-3588.

    Google Scholar

    [9] P. Y. Chen, X. P. Zhang and Y. X. Li, Fractional non-autonomous evolution equation with nonlocal conditions, Journal of Pseudo-Differential Operators and Applications.

    Google Scholar

    [10] P. Y. Chen, X. P. Zhang and Y. X. Li, Approximation Technique for Fractional Evolution Equations with Nonlocal Integral Conditions, Mediterr. J. Math., 2017, 14(6), 214-226.

    Google Scholar

    [11] P. Y. Chen, X. P. Zhang and Y. X. Li, Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 2017, 73(5), 794-803. doi: 10.1016/j.camwa.2017.01.009

    CrossRef Google Scholar

    [12] P. Y. Chen and Y. X. Li, Existence of mild solutions for fractional evolution equations with mixed monotone nonlocal conditions, Z. Angew. Math. Phys., 2014, 65(4), 711-728. doi: 10.1007/s00033-013-0351-z

    CrossRef Google Scholar

    [13] P. Chen, Y. Li, Q. Chen and B. Feng, On the initial value problem of fractional evolution equations with noncompact semigroup, Comput. Math. Appl., 2014, 67, 1108-1115. doi: 10.1016/j.camwa.2014.01.002

    CrossRef Google Scholar

    [14] P. Y. Chen and Y. X. Li, Iterative Method for a New Class of Evolution Equations with Non-instantaneous Impulses, Taiwanese J. Math., 2017, 21(4), 913-942. doi: 10.11650/tjm/7912

    CrossRef Google Scholar

    [15] P. Y. Chen and Y. X. Li, A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 2018, 17(5), 1975-1992. doi: 10.3934/cpaa.2018094

    CrossRef Google Scholar

    [16] K. Deiling, Nonlinear Functional Anaiysis, Springer-Verlag, New York, 1985.

    Google Scholar

    [17] S. Du and V. Lakshmikantham, Monotone iterative technique for differential equtions in Banach spaces, J. Math. Anal. Appl., 1982, 87, 454-459. doi: 10.1016/0022-247X(82)90134-2

    CrossRef Google Scholar

    [18] M. A. EI-Gebeily, D. O. Regan and J. J. Nieto, A monotone iterative technique for stationary and time dependent problems in Banach spaces, J. Comput. Appl. Math., 2010, 233, 2359-2404.

    Google Scholar

    [19] Y. Du, Fixed points of increasing operators in Banach spaces and applications, Appl. Anal., 1990, 38, 1-20. doi: 10.1080/00036819008839957

    CrossRef Google Scholar

    [20] M. Fečkan, Y. Zhou and J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Communn Nonlinear Sci Numer Simul., 2012, 17, 3050-3060. doi: 10.1016/j.cnsns.2011.11.017

    CrossRef Google Scholar

    [21] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operator with applications, Nonlinear Anal., 1987, 11, 623-632. doi: 10.1016/0362-546X(87)90077-0

    CrossRef Google Scholar

    [22] D. Guo and X. Liu, Extremal solutions of nonlinear impulsive integro differential equations in Banach spaces, J. Math. Anal. Appl., 1993, 177, 538-552. doi: 10.1006/jmaa.1993.1276

    CrossRef Google Scholar

    [23] D. J. Guo and J. X. Sun, Ordinary Differential Equations in Abstract Spaces, Shandong Science and Technology. Jinan, (1989) (in Chinese)

    Google Scholar

    [24] H. R. Heinz, On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 1983, 71, 1351-1371.

    Google Scholar

    [25] Y. Li and Z. Liu, Monotone iterative technique for addressing impulsive integrodifferential equations in Banach spaces, Nonlinear Anal., 2007, 66, 83-92. doi: 10.1016/j.na.2005.11.013

    CrossRef Google Scholar

    [26] Y. Li, The positive solutions of abstract semilinear evolution equations and their applications, Acta Math. Sin., 1996, 39(5), 666-672. (in Chinese)

    Google Scholar

    [27] B. Li and H. Gou, Monotone iterative method for the periodic boundary value problems of impulsive evolution equations in Banach spaces, Chaos Solitons Fractals., 2018, 110, 209-215. doi: 10.1016/j.chaos.2018.03.027

    CrossRef Google Scholar

    [28] J. Mu and Y. Li, Monotone interative technique for impulsive fractional evolution equations, Journal of Inequalities and Applications., 2011, 125.

    Google Scholar

    [29] J. Mu, Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions, Boundary Value Problem, 2012, 71.

    Google Scholar

    [30] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, Berlin, 1983.

    Google Scholar

    [31] M. H. M. Rashid, A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation, Commun Nonlinear Sci Numer Simul., 2011, 16, 3493-503. doi: 10.1016/j.cnsns.2010.12.043

    CrossRef Google Scholar

    [32] J. Sun and Z. Zhao, Extremal solutions of initial value problem for integrodifferential equations of mixed type in Banach spaces, Ann. Differential Equations., 1992, 8, 469-475.

    Google Scholar

    [33] X. B. Shu and F. Xu, Upper and lower solution method for fractional evolution equations with order 1 < α < 2, J. Korean Math. Soc., 2014, 51(6), 1123-1139. doi: 10.4134/JKMS.2014.51.6.1123

    CrossRef Google Scholar

    [34] X. B. Shu, Y. Lai and Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal., 2011, 74(5), 2003- 2011. doi: 10.1016/j.na.2010.11.007

    CrossRef Google Scholar

    [35] X. B. Shu and Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Applied Mathematics and Computation., 2016, 273, 465- 476. doi: 10.1016/j.amc.2015.10.020

    CrossRef Google Scholar

    [36] X. B. Shu and Q. Q. Wang, The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order 1 < α < 2, Computers and Mathematics with Applications., 2012, 64, 2100-2110. doi: 10.1016/j.camwa.2012.04.006

    CrossRef Google Scholar

    [37] G. Wang, L. Zhang and G. Song, Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions, Nonlinear Anal: TMA., 2011, 74, 974-982. doi: 10.1016/j.na.2010.09.054

    CrossRef Google Scholar

    [38] J. Wang, Y. Zhou and M. Fečkan, On recent developments in the theory of boundary value problems for impulsive fractional differentail equations, Computers and Mathematics with Applications., 2012, 64, 3008-3020. doi: 10.1016/j.camwa.2011.12.064

    CrossRef Google Scholar

    [39] J. Wang, M. Fečkan and Y. Zhou, Ulam's type stability of impulsive ordinary differential equations, J Math Anal Appl., 2012, 395, 258-264. doi: 10.1016/j.jmaa.2012.05.040

    CrossRef Google Scholar

    [40] J. Wang, X. Li and W. Wei, On the natural solution of an impulsive fractional differential equation of order q∈(1,2), Commun Nonlinear Sci Numer Simul., 2012, 17, 4384-4394. doi: 10.1016/j.cnsns.2012.03.011

    CrossRef Google Scholar

    [41] L. Wang and Z. Wang, Monotone iterative technique for parameterized BVPs of abstract semilinear evolution equations, Comput. Math. Appl., 2003, 46, 1229-1243. doi: 10.1016/S0898-1221(03)90214-8

    CrossRef Google Scholar

    [42] J. Wang, M. Fečkan and Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equ., 2011, 8, 345-361. doi: 10.4310/DPDE.2011.v8.n4.a3

    CrossRef Google Scholar

    [43] J. Wang, Y. Zhou and M. Fečkan, Alternative results and robustness for fractional evolution equations with periodic boundary conditions, Electron. J. Qual. Theory Differ. Equ., 2011, 97, 1-15.

    Google Scholar

    [44] X. Wang and X. B. Shu, The existence of positive mild solutions for fractional differential evolution equations with nonlocal conditions of order 1 < α < 2, Adv. Difference Equ. 2015, 2015: 159, 15 pp.

    Google Scholar

    [45] H. Ye, J. Gao and Y. Ding, A generalized Gronwall inequality and its applications to a fractional differential equation, J. Math. Anal. Appl., 2007, 328, 1075-1081. doi: 10.1016/j.jmaa.2006.05.061

    CrossRef Google Scholar

    [46] Y. Zhou and F. Jiao, Existence of mild solutions for fractional neutral evolution equations, Comp. Math. Appl, 2010, 59, 1063-1077. doi: 10.1016/j.camwa.2009.06.026

    CrossRef Google Scholar

Article Metrics

Article views(2579) PDF downloads(670) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint