[1]
|
R. A. Blaya, J. B. Reyes, F. Brackx, H. De Schepper, Boundary value problems for the quaternionic Hermitian in R4, Bound. Value Probl., 2012, 2012, 74. doi: 10.1186/1687-2770-2012-74
CrossRef Google Scholar
|
[2]
|
R. A. Blaya, J. B. Reyes, F. Brackx, Cauchy integral formulae in Hermitian Quaternionic Clifford Analysis, Complex Anal. Oper. Theory, 2012, 6, 971-985. doi: 10.1007/s11785-011-0168-8
CrossRef Google Scholar
|
[3]
|
Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent. Math. 2013, 193, 149-158. doi: 10.1007/s00222-012-0423-2
CrossRef Google Scholar
|
[4]
|
L. H. Chuan, N. V. Mau, N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117-137. doi: 10.1080/17476930701619782
CrossRef Google Scholar
|
[5]
|
J. Colliander, M. Keel, G. Staffilani, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39-113.
Google Scholar
|
[6]
|
M. C. De-Bonis, C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391-1410.
Google Scholar
|
[7]
|
H. Du, J. H. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308-314. doi: 10.1016/j.jmaa.2008.07.037
CrossRef Google Scholar
|
[8]
|
C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420, 1-19. doi: 10.1016/j.jmaa.2014.05.064
CrossRef Google Scholar
|
[9]
|
Y. F. Gong, L. T. Leong, T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435-444. doi: 10.1016/j.jmaa.2008.12.021
CrossRef Google Scholar
|
[10]
|
J. K. Lu, Boundary Value Problems for Analytic Functions, Singapore: World Scientific, 2004.
Google Scholar
|
[11]
|
G. S. Litvinchuk, Singular Integral Equations and Boundary Value Problems with Shift, Nauka: Moscow press, 1978.
Google Scholar
|
[12]
|
G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publisers, 2004.
Google Scholar
|
[13]
|
P. R. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015, 40. doi: 10.1186/s13661-015-0301-0
CrossRef Google Scholar
|
[14]
|
P. R. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631-2645. doi: 10.1002/mma.v42.8
CrossRef Google Scholar
|
[15]
|
P. R. Li, G. B. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185-194.
Google Scholar
|
[16]
|
P. R. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 2017, 307. doi: 10.1186/s13660-017-1580-z
CrossRef Google Scholar
|
[17]
|
P. R. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314-323. doi: 10.1016/j.cam.2016.07.027
CrossRef Google Scholar
|
[18]
|
P. R. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67-75. doi: 10.1080/17476933.2015.1057712
CrossRef Google Scholar
|
[19]
|
P. R. Li, Guangbin Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455-5471. doi: 10.1016/j.jde.2018.07.056
CrossRef Google Scholar
|
[20]
|
P. R. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344-345, 116-127.
Google Scholar
|
[21]
|
P. R. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 2017, 360. doi: 10.1186/s13662-017-1413-x
CrossRef Google Scholar
|
[22]
|
P. R. Li, Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 2019, 22. doi: 10.1186/s13660-019-1975-0
CrossRef Google Scholar
|
[23]
|
P. R. Li, Singular integral equations of convolution type with cosecant kernels and periodic coefficients, Math. Probl. Eng., 2017. https://doi.org/10.1155/2017/6148393.
Google Scholar
|
[24]
|
P. R. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023-1038. doi: 10.1080/01630563.2019.1586721
CrossRef Google Scholar
|
[25]
|
P. R. Li, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, J. Funct. Spaces, 2018. https://doi.org/10.1155/2018/6967149.
Google Scholar
|
[26]
|
N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.
Google Scholar
|
[27]
|
T. Nakazi, T. Yamamoto, Normal singular integral operators with Cauchy kernel, Integral Equations Operator Theory, 2014, 78, 233-248. doi: 10.1007/s00020-013-2104-y
CrossRef Google Scholar
|
[28]
|
E. K. Praha, V. M. Valencia, Solving singular convolution equations using inverse Fast Fourier Transform, Applications of Mathematics, 2012, 57(5), 543-550. doi: 10.1007/s10492-012-0032-9
CrossRef Google Scholar
|
[29]
|
N. M. Tuan, N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712-718. doi: 10.1016/j.jmaa.2010.04.019
CrossRef Google Scholar
|