2019 Volume 9 Issue 3
Article Contents

Pingrun Li. ON SOLVABILITY OF SINGULAR INTEGRAL-DIFFERENTIAL EQUATIONS WITH CONVOLUTION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1071-1082. doi: 10.11948/2156-907X.20180264
Citation: Pingrun Li. ON SOLVABILITY OF SINGULAR INTEGRAL-DIFFERENTIAL EQUATIONS WITH CONVOLUTION[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1071-1082. doi: 10.11948/2156-907X.20180264

ON SOLVABILITY OF SINGULAR INTEGRAL-DIFFERENTIAL EQUATIONS WITH CONVOLUTION

  • In this paper, we study a class of singular integral-different equations of convolution type with Cauchy kernel. By means of the classical boundary value theory, of the theory of Fourier analysis, and of the principle of analytic continuation, we transform the equations into the Riemann-Hilbert problems with discontinuous coefficients and obtain the general solutions and conditions of solvability in class {0}. Thus, the result in this paper generalizes the classical theory of integral equations and boundary value problems.
    MSC: 45E05, 45E10, 30E25
  • 加载中
  • [1] R. A. Blaya, J. B. Reyes, F. Brackx, H. De Schepper, Boundary value problems for the quaternionic Hermitian in R4, Bound. Value Probl., 2012, 2012, 74. doi: 10.1186/1687-2770-2012-74

    CrossRef Google Scholar

    [2] R. A. Blaya, J. B. Reyes, F. Brackx, Cauchy integral formulae in Hermitian Quaternionic Clifford Analysis, Complex Anal. Oper. Theory, 2012, 6, 971-985. doi: 10.1007/s11785-011-0168-8

    CrossRef Google Scholar

    [3] Z. Blocki, Suita conjecture and Ohsawa-Takegoshi extension theorem, Invent. Math. 2013, 193, 149-158. doi: 10.1007/s00222-012-0423-2

    CrossRef Google Scholar

    [4] L. H. Chuan, N. V. Mau, N. M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Var. Elliptic Equ., 2008, 53(2), 117-137. doi: 10.1080/17476930701619782

    CrossRef Google Scholar

    [5] J. Colliander, M. Keel, G. Staffilani, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrodinger equation, Invent. Math., 2010, 181(1), 39-113.

    Google Scholar

    [6] M. C. De-Bonis, C. Laurita, Numerical solution of systems of Cauchy singular integral equations with constant coefficients, Appl. Math. Comput., 2012, 219, 1391-1410.

    Google Scholar

    [7] H. Du, J. H. Shen, Reproducing kernel method of solving singular integral equation with cosecant kernel, J. Math. Anal. Appl., 2008, 348(1), 308-314. doi: 10.1016/j.jmaa.2008.07.037

    CrossRef Google Scholar

    [8] C. Gomez, H. Prado and S. Trofimchuk, Separation dichotomy and wavefronts for a nonlinear convolution equation, J. Math. Anal. Appl., 2014, 420, 1-19. doi: 10.1016/j.jmaa.2014.05.064

    CrossRef Google Scholar

    [9] Y. F. Gong, L. T. Leong, T. Qiao, Two integral operators in Clifford analysis, J. Math. Anal. Appl., 2009, 354, 435-444. doi: 10.1016/j.jmaa.2008.12.021

    CrossRef Google Scholar

    [10] J. K. Lu, Boundary Value Problems for Analytic Functions, Singapore: World Scientific, 2004.

    Google Scholar

    [11] G. S. Litvinchuk, Singular Integral Equations and Boundary Value Problems with Shift, Nauka: Moscow press, 1978.

    Google Scholar

    [12] G. S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, London: Kluwer Academic Publisers, 2004.

    Google Scholar

    [13] P. R. Li, One class of generalized boundary value problem for analytic functions, Bound. Value Probl., 2015, 2015, 40. doi: 10.1186/s13661-015-0301-0

    CrossRef Google Scholar

    [14] P. R. Li, Generalized boundary value problems for analytic functions with convolutions and its applications, Math. Meth. Appl. Sci., 2019, 42, 2631-2645. doi: 10.1002/mma.v42.8

    CrossRef Google Scholar

    [15] P. R. Li, G. B. Ren, Some classes of equations of discrete type with harmonic singular operator and convolution, Appl. Math. Comput., 2016, 284, 185-194.

    Google Scholar

    [16] P. R. Li, Some classes of singular integral equations of convolution type in the class of exponentially increasing functions, J. Inequal. Appl., 2017, 2017, 307. doi: 10.1186/s13660-017-1580-z

    CrossRef Google Scholar

    [17] P. R. Li, Generalized convolution-type singular integral equations, Appl. Math. Comput., 2017, 311, 314-323. doi: 10.1016/j.cam.2016.07.027

    CrossRef Google Scholar

    [18] P. R. Li, Two classes of linear equations of discrete convolution type with harmonic singular operators, Complex Var. Elliptic Equ., 2016, 61(1), 67-75. doi: 10.1080/17476933.2015.1057712

    CrossRef Google Scholar

    [19] P. R. Li, Guangbin Ren, Solvability of singular integro-differential equations via Riemann-Hilbert problem, J. Differential Equations, 2018, 265, 5455-5471. doi: 10.1016/j.jde.2018.07.056

    CrossRef Google Scholar

    [20] P. R. Li, Singular integral equations of convolution type with Cauchy kernel in the class of exponentially increasing functions, Appl. Math. Comput., 2019, 344-345, 116-127.

    Google Scholar

    [21] P. R. Li, Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem, Adv. Difference Equ., 2017, 2017, 360. doi: 10.1186/s13662-017-1413-x

    CrossRef Google Scholar

    [22] P. R. Li, Solvability of some classes of singular integral equations of convolution type via Riemann-Hilbert problem, J. Inequal. Appl., 2019, 2019, 22. doi: 10.1186/s13660-019-1975-0

    CrossRef Google Scholar

    [23] P. R. Li, Singular integral equations of convolution type with cosecant kernels and periodic coefficients, Math. Probl. Eng., 2017. https://doi.org/10.1155/2017/6148393.

    Google Scholar

    [24] P. R. Li, Singular integral equations of convolution type with reflection and translation shifts, Numer. Func. Anal. Opt., 2019, 40(9), 1023-1038. doi: 10.1080/01630563.2019.1586721

    CrossRef Google Scholar

    [25] P. R. Li, Linear BVPs and SIEs for generalized regular functions in Clifford analysis, J. Funct. Spaces, 2018. https://doi.org/10.1155/2018/6967149.

    Google Scholar

    [26] N. I. Muskhelishvilli, Singular Integral Equations, NauKa, Moscow, 2002.

    Google Scholar

    [27] T. Nakazi, T. Yamamoto, Normal singular integral operators with Cauchy kernel, Integral Equations Operator Theory, 2014, 78, 233-248. doi: 10.1007/s00020-013-2104-y

    CrossRef Google Scholar

    [28] E. K. Praha, V. M. Valencia, Solving singular convolution equations using inverse Fast Fourier Transform, Applications of Mathematics, 2012, 57(5), 543-550. doi: 10.1007/s10492-012-0032-9

    CrossRef Google Scholar

    [29] N. M. Tuan, N. T. Thu-Huyen, The solvability and explicit solutions of two integral equations via generalized convolutions, J. Math. Anal. Appl., 2010, 369, 712-718. doi: 10.1016/j.jmaa.2010.04.019

    CrossRef Google Scholar

Article Metrics

Article views(2193) PDF downloads(810) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint