[1]
|
S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Diff. Eqs., 1996, 124(1), 80-107. doi: 10.1006/jdeq.1996.0003
CrossRef Google Scholar
|
[2]
|
J. Cao, P. Wang, R. Yuan and Y. Mei, Bogdanov-Takens Bifurcation of a Class of Delayed Reaction-Diffusion System, Internat. J. Bifur. Chaos, 2015, 25(06), 1550082. doi: 10.1142/S0218127415500820
CrossRef Google Scholar
|
[3]
|
S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Diff. Eqs., 2012, 253(12), 3440-3470. doi: 10.1016/j.jde.2012.08.031
CrossRef Google Scholar
|
[4]
|
S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Internat. J. Bifur. Chaos, 2012, 22(03), 1250061. doi: 10.1142/S0218127412500617
CrossRef Google Scholar
|
[5]
|
S. Chen and J. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete Contin. Dyn. Syst., 2018, 38(1), 43-62. doi: 10.3934/dcds.2018002
CrossRef Google Scholar
|
[6]
|
Y. Dong, S. Li and S. Zhang, Hopf bifurcation in a reaction-diffusion model with degn-harrison reaction scheme, Nonlinear Anal. Real World Appl., 2017, 33, 284-297. doi: 10.1016/j.nonrwa.2016.07.002
CrossRef Google Scholar
|
[7]
|
L. Du and M. Wang, Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 2017, 366(2), 473-485.
Google Scholar
|
[8]
|
T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 2000, 352(5), 2217-2238. doi: 10.1090/S0002-9947-00-02280-7
CrossRef Google Scholar
|
[9]
|
T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 2001, 254(2), 433-463. doi: 10.1006/jmaa.2000.7182
CrossRef Google Scholar
|
[10]
|
E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type Ⅲ functional response and Allee effect on prey, B. Math. Biol., 2011, 73(6), 1378-1397. doi: 10.1007/s11538-010-9577-5
CrossRef Google Scholar
|
[11]
|
S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Diff. Eqs., 2015, 259(4), 1409-1448. doi: 10.1016/j.jde.2015.03.006
CrossRef Google Scholar
|
[12]
|
S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 2016, 26(2), 545- 580. doi: 10.1007/s00332-016-9285-x
CrossRef Google Scholar
|
[13]
|
K. P. Hadeler and S. Ruan, Interaction of diffusion and delay, Discrete Contin. Dyn. Syst. Ser. B, 2007, 8(1), 95-105. doi: 10.3934/dcdsb
CrossRef Google Scholar
|
[14]
|
M. Haragus and G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Springer, London, 2010.
Google Scholar
|
[15]
|
R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reactiondiffusion system with distributed delay, J. Diff. Eqs., 2011, 250(6), 2779-2806. doi: 10.1016/j.jde.2011.01.011
CrossRef Google Scholar
|
[16]
|
R. Hu and Y. Yuan, Stability and Hopf bifurcation analysis for Nicholson's blowflies equation with non-local delay, European J. Appl. Math., 2012, 23(6), 777-796. doi: 10.1017/S0956792512000265
CrossRef Google Scholar
|
[17]
|
W. Jiang, Q. An and J. Shi, Formulation of the normal forms of Turing-Hopf bifurcation in reaction-diffusion systems with time delay. https://arxiv.org/abs/1802.10286
Google Scholar
|
[18]
|
J. Jin, J. Shi, J. Wei and F.Yi, Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions, Rocky Mountain J. Math., 2013, 43(5), 1637-1674. doi: 10.1216/RMJ-2013-43-5-1637
CrossRef Google Scholar
|
[19]
|
W. Just, M. Bose, S. Bose, H. Engel and E.Schöll, Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reactiondiffusion system, Physical Rev. E, 2001, 64, 026219. doi: 10.1103/PhysRevE.64.026219
CrossRef Google Scholar
|
[20]
|
H. Kidachi, On mode interactions in reaction-diffusion equation with nearly degenerate bifurcations, Prog. Theoret. Phy., 1980, 63, 1152-1169. doi: 10.1143/PTP.63.1152
CrossRef Google Scholar
|
[21]
|
S. Kondo and T. Miura, Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation, Science, 2010, 329(5999), 1616-1620. doi: 10.1126/science.1179047
CrossRef Google Scholar
|
[22]
|
Y. Lv, Y. Pei and R. Yuan, Hopf bifurcation and global stability of a diffusive Gause-type predator-prey models, Comput. Math. Appl., 2016, 72(10), 2620-2635. doi: 10.1016/j.camwa.2016.09.022
CrossRef Google Scholar
|
[23]
|
Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer-Verlag, Berlin, 2000.
Google Scholar
|
[24]
|
M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delaydifferential equation with diffusion, SIAM J. Math. Anal., 1989, 20(3), 533-546. doi: 10.1137/0520037
CrossRef Google Scholar
|
[25]
|
P. J. Pal, T. Saha, M. Sen and M. Banerjee, A delayed predator-prey model with strong allee effect in prey population growth, Nonlinear Dynam., 2012, 68(1), 23-42.
Google Scholar
|
[26]
|
J. E. Pearson, Complex patterns in a simple system, Science, 1993, 261(5118), 189-192. doi: 10.1126/science.261.5118.189
CrossRef Google Scholar
|
[27]
|
Y. Peng and H. Ling, Pattern formation in a ratio-dependent predator-prey model with cross-diffusion, Appl. Math. Comput., 2018, 331, 307-318.
Google Scholar
|
[28]
|
Y. Peng and T. Zhang, Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl. Math. Comput., 2016, 275, 1-12.
Google Scholar
|
[29]
|
H. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 2015, 80(5), 1534-1568. doi: 10.1093/imamat/hxv006
CrossRef Google Scholar
|
[30]
|
Q. Shi, J. Shi and Y. Song, Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition, J. Diff. Eqs., 2017, 263(10), 6537-6575. doi: 10.1016/j.jde.2017.07.024
CrossRef Google Scholar
|
[31]
|
J. Shi, Z. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, J. Appl. Anal. Comput., 2011, 1(1), 95-119.
Google Scholar
|
[32]
|
Y. Song, H. Jiang, Q. Liu and Y. Yuan, Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation, SIAM J. Appl. Dyn. Syst., 2017, 16(4), 2030-2062. doi: 10.1137/16M1097560
CrossRef Google Scholar
|
[33]
|
Y. Song and J. Jiang, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback, Internat. J. Bifur. Chaos, 2012, 22(12), 1250286. doi: 10.1142/S0218127412502860
CrossRef Google Scholar
|
[34]
|
Y. Song, T. Zhang and Y. Peng, Turing-Hopf bifurcation in the reactiondiffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 2016, 33, 229-258. doi: 10.1016/j.cnsns.2015.10.002
CrossRef Google Scholar
|
[35]
|
Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Diff. Eqs., 2009, 247(4), 1156-1184. doi: 10.1016/j.jde.2009.04.017
CrossRef Google Scholar
|
[36]
|
Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 2014, 27(1), 87-104.
Google Scholar
|
[37]
|
X. Tang and Y. Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput., 2015, 254, 375-391.
Google Scholar
|
[38]
|
A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 1952, 237(641), 37-72. doi: 10.1098/rstb.1952.0012
CrossRef Google Scholar
|
[39]
|
V. K. Vanag and I. R. Epstein, Pattern formation mechanisms in reactiondiffusion systems, Int. J. Dev. Biol., 2009, 53(5-6), 673-681. doi: 10.1387/ijdb.072484vv
CrossRef Google Scholar
|
[40]
|
A. I. Volpert, Vitaly Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems, vol. 140, American Mathematical Soc., 1994.
Google Scholar
|
[41]
|
W. Wang, X. Gao, Y. Cai, H. Shi and S. Fu, Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin. Inst., 2018, 355, 7226-7245. doi: 10.1016/j.jfranklin.2018.07.014
CrossRef Google Scholar
|
[42]
|
J. Wang, J. Liang, Y. Liu and J. Wang, Zero singularities of codimension two in a delayed predator-prey diffusion system, Neurocomputing, 2017, 227, 10-17. doi: 10.1016/j.neucom.2016.07.060
CrossRef Google Scholar
|
[43]
|
J. Wang, J. Shi and J. Wei, Predator-prey system with strong allee effect in prey, J. Math. Biol., 2011, 62(3), 291-331. doi: 10.1007/s00285-010-0332-1
CrossRef Google Scholar
|
[44]
|
S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 2019, 48, 12-39. doi: 10.1016/j.nonrwa.2019.01.004
CrossRef Google Scholar
|
[45]
|
H. Wu and X. Wu, Bogdanov-Takens singularity for a system of reactiondiffusion equations, J. Math. Chem., 2016, 54(1), 120-136. doi: 10.1007/s10910-015-0553-z
CrossRef Google Scholar
|
[46]
|
J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with Delay, J. Dynam. Differential Equations, 2001, 13(3), 651-687. doi: 10.1023/A:1016690424892
CrossRef Google Scholar
|
[47]
|
R. Yang and Y. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal. Real World Appl., 2016, 31, 356-387. doi: 10.1016/j.nonrwa.2016.02.006
CrossRef Google Scholar
|
[48]
|
T. Zhang, X. Liu, X. Meng and T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 2018, 75(12), 4490- 4504. doi: 10.1016/j.camwa.2018.03.044
CrossRef Google Scholar
|
[49]
|
F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 2009, 246(5), 1944-1977. doi: 10.1016/j.jde.2008.10.024
CrossRef Google Scholar
|
[50]
|
W. Zuo and J. Wei, Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect, Nonlinear Anal. Real World Appl., 2011, 12(4), 1998-2011. doi: 10.1016/j.nonrwa.2010.12.016
CrossRef Google Scholar
|