2019 Volume 9 Issue 3
Article Contents

Yongli Song, Heping Jiang, Yuan Yuan. TURING-HOPF BIFURCATION IN THE REACTION-DIFFUSION SYSTEM WITH DELAY AND APPLICATION TO A DIFFUSIVE PREDATOR-PREY MODEL[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1132-1164. doi: 10.11948/2156-907X.20190015
Citation: Yongli Song, Heping Jiang, Yuan Yuan. TURING-HOPF BIFURCATION IN THE REACTION-DIFFUSION SYSTEM WITH DELAY AND APPLICATION TO A DIFFUSIVE PREDATOR-PREY MODEL[J]. Journal of Applied Analysis & Computation, 2019, 9(3): 1132-1164. doi: 10.11948/2156-907X.20190015

TURING-HOPF BIFURCATION IN THE REACTION-DIFFUSION SYSTEM WITH DELAY AND APPLICATION TO A DIFFUSIVE PREDATOR-PREY MODEL

  • Corresponding author: Email address:songyl@hznu.edu.cn (Y. Song) 
  • Fund Project: The authors were supported by National Natural Science Foundation of China (11571257, 11701208), the Science and Technology Commission of Shanghai Municipality (STCSM) (18dz2271000) and Zhejiang Provincial Natural Science Foundation of China (LY19A010010)
  • The interactions of diffusion-driven Turing instability and delayinduced Hopf bifurcation always give rise to rich spatiotemporal dynamics. In this paper, we first derive the algorithm for the normal forms associated with the Turing-Hopf bifurcation in the reaction-diffusion system with delay, which can be used to investigate the spatiotemporal dynamical classification near the Turing-Hopf bifurcation point in the parameter plane. Then, we consider a diffusive predator-prey model with weak Allee effect and delay. Through investigating the dynamics of the corresponding normal form of Turing-Hopf bifurcation induced by diffusion and delay, the spatiotemporal dynamics near this bifurcation point can be divided into six categories. Especially, stable spatially homogeneous/inhomogeneous periodic solutions and steady states, coexistence of two stable spatially inhomogeneous periodic solutions, coexistence of two stable spaially inhomogeneous steady states and the transition from one kind of spatiotemporal patterns to another are found.
    MSC: 35B10, 35B32, 35B35, 35K57, 35R10
  • 加载中
  • [1] S. Busenberg and W. Huang, Stability and Hopf bifurcation for a population delay model with diffusion effects, J. Diff. Eqs., 1996, 124(1), 80-107. doi: 10.1006/jdeq.1996.0003

    CrossRef Google Scholar

    [2] J. Cao, P. Wang, R. Yuan and Y. Mei, Bogdanov-Takens Bifurcation of a Class of Delayed Reaction-Diffusion System, Internat. J. Bifur. Chaos, 2015, 25(06), 1550082. doi: 10.1142/S0218127415500820

    CrossRef Google Scholar

    [3] S. Chen and J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Diff. Eqs., 2012, 253(12), 3440-3470. doi: 10.1016/j.jde.2012.08.031

    CrossRef Google Scholar

    [4] S. Chen, J. Shi and J. Wei, Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey system, Internat. J. Bifur. Chaos, 2012, 22(03), 1250061. doi: 10.1142/S0218127412500617

    CrossRef Google Scholar

    [5] S. Chen and J. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete Contin. Dyn. Syst., 2018, 38(1), 43-62. doi: 10.3934/dcds.2018002

    CrossRef Google Scholar

    [6] Y. Dong, S. Li and S. Zhang, Hopf bifurcation in a reaction-diffusion model with degn-harrison reaction scheme, Nonlinear Anal. Real World Appl., 2017, 33, 284-297. doi: 10.1016/j.nonrwa.2016.07.002

    CrossRef Google Scholar

    [7] L. Du and M. Wang, Hopf bifurcation analysis in the 1-D Lengyel-Epstein reaction-diffusion model, J. Math. Anal. Appl., 2017, 366(2), 473-485.

    Google Scholar

    [8] T. Faria, Normal forms and Hopf bifurcation for partial differential equations with delays, Trans. Amer. Math. Soc., 2000, 352(5), 2217-2238. doi: 10.1090/S0002-9947-00-02280-7

    CrossRef Google Scholar

    [9] T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion, J. Math. Anal. Appl., 2001, 254(2), 433-463. doi: 10.1006/jmaa.2000.7182

    CrossRef Google Scholar

    [10] E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type Ⅲ functional response and Allee effect on prey, B. Math. Biol., 2011, 73(6), 1378-1397. doi: 10.1007/s11538-010-9577-5

    CrossRef Google Scholar

    [11] S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Diff. Eqs., 2015, 259(4), 1409-1448. doi: 10.1016/j.jde.2015.03.006

    CrossRef Google Scholar

    [12] S. Guo and L. Ma, Stability and bifurcation in a delayed reaction-diffusion equation with Dirichlet boundary condition, J. Nonlinear Sci., 2016, 26(2), 545- 580. doi: 10.1007/s00332-016-9285-x

    CrossRef Google Scholar

    [13] K. P. Hadeler and S. Ruan, Interaction of diffusion and delay, Discrete Contin. Dyn. Syst. Ser. B, 2007, 8(1), 95-105. doi: 10.3934/dcdsb

    CrossRef Google Scholar

    [14] M. Haragus and G. Iooss, Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems, Springer, London, 2010.

    Google Scholar

    [15] R. Hu and Y. Yuan, Spatially nonhomogeneous equilibrium in a reactiondiffusion system with distributed delay, J. Diff. Eqs., 2011, 250(6), 2779-2806. doi: 10.1016/j.jde.2011.01.011

    CrossRef Google Scholar

    [16] R. Hu and Y. Yuan, Stability and Hopf bifurcation analysis for Nicholson's blowflies equation with non-local delay, European J. Appl. Math., 2012, 23(6), 777-796. doi: 10.1017/S0956792512000265

    CrossRef Google Scholar

    [17] W. Jiang, Q. An and J. Shi, Formulation of the normal forms of Turing-Hopf bifurcation in reaction-diffusion systems with time delay. https://arxiv.org/abs/1802.10286

    Google Scholar

    [18] J. Jin, J. Shi, J. Wei and F.Yi, Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions, Rocky Mountain J. Math., 2013, 43(5), 1637-1674. doi: 10.1216/RMJ-2013-43-5-1637

    CrossRef Google Scholar

    [19] W. Just, M. Bose, S. Bose, H. Engel and E.Schöll, Spatiotemporal dynamics near a supercritical Turing-Hopf bifurcation in a two-dimensional reactiondiffusion system, Physical Rev. E, 2001, 64, 026219. doi: 10.1103/PhysRevE.64.026219

    CrossRef Google Scholar

    [20] H. Kidachi, On mode interactions in reaction-diffusion equation with nearly degenerate bifurcations, Prog. Theoret. Phy., 1980, 63, 1152-1169. doi: 10.1143/PTP.63.1152

    CrossRef Google Scholar

    [21] S. Kondo and T. Miura, Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation, Science, 2010, 329(5999), 1616-1620. doi: 10.1126/science.1179047

    CrossRef Google Scholar

    [22] Y. Lv, Y. Pei and R. Yuan, Hopf bifurcation and global stability of a diffusive Gause-type predator-prey models, Comput. Math. Appl., 2016, 72(10), 2620-2635. doi: 10.1016/j.camwa.2016.09.022

    CrossRef Google Scholar

    [23] Z. Mei, Numerical Bifurcation Analysis for Reaction-Diffusion Equations, Springer-Verlag, Berlin, 2000.

    Google Scholar

    [24] M. C. Memory, Bifurcation and asymptotic behavior of solutions of a delaydifferential equation with diffusion, SIAM J. Math. Anal., 1989, 20(3), 533-546. doi: 10.1137/0520037

    CrossRef Google Scholar

    [25] P. J. Pal, T. Saha, M. Sen and M. Banerjee, A delayed predator-prey model with strong allee effect in prey population growth, Nonlinear Dynam., 2012, 68(1), 23-42.

    Google Scholar

    [26] J. E. Pearson, Complex patterns in a simple system, Science, 1993, 261(5118), 189-192. doi: 10.1126/science.261.5118.189

    CrossRef Google Scholar

    [27] Y. Peng and H. Ling, Pattern formation in a ratio-dependent predator-prey model with cross-diffusion, Appl. Math. Comput., 2018, 331, 307-318.

    Google Scholar

    [28] Y. Peng and T. Zhang, Turing instability and pattern induced by cross-diffusion in a predator-prey system with Allee effect, Appl. Math. Comput., 2016, 275, 1-12.

    Google Scholar

    [29] H. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, IMA J. Appl. Math., 2015, 80(5), 1534-1568. doi: 10.1093/imamat/hxv006

    CrossRef Google Scholar

    [30] Q. Shi, J. Shi and Y. Song, Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition, J. Diff. Eqs., 2017, 263(10), 6537-6575. doi: 10.1016/j.jde.2017.07.024

    CrossRef Google Scholar

    [31] J. Shi, Z. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, J. Appl. Anal. Comput., 2011, 1(1), 95-119.

    Google Scholar

    [32] Y. Song, H. Jiang, Q. Liu and Y. Yuan, Spatiotemporal Dynamics of the Diffusive Mussel-Algae Model Near Turing-Hopf Bifurcation, SIAM J. Appl. Dyn. Syst., 2017, 16(4), 2030-2062. doi: 10.1137/16M1097560

    CrossRef Google Scholar

    [33] Y. Song and J. Jiang, Hopf and steady-state-Hopf bifurcations in delay differential equations with applications to a damped harmonic oscillator with delay feedback, Internat. J. Bifur. Chaos, 2012, 22(12), 1250286. doi: 10.1142/S0218127412502860

    CrossRef Google Scholar

    [34] Y. Song, T. Zhang and Y. Peng, Turing-Hopf bifurcation in the reactiondiffusion equations and its applications, Commun. Nonlinear Sci. Numer. Simul., 2016, 33, 229-258. doi: 10.1016/j.cnsns.2015.10.002

    CrossRef Google Scholar

    [35] Y. Su, J. Wei and J. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Diff. Eqs., 2009, 247(4), 1156-1184. doi: 10.1016/j.jde.2009.04.017

    CrossRef Google Scholar

    [36] Y. Su and X. Zou, Transient oscillatory patterns in the diffusive non-local blowfly equation with delay under the zero-flux boundary condition, Nonlinearity, 2014, 27(1), 87-104.

    Google Scholar

    [37] X. Tang and Y. Song, Stability, Hopf bifurcations and spatial patterns in a delayed diffusive predator-prey model with herd behavior, Appl. Math. Comput., 2015, 254, 375-391.

    Google Scholar

    [38] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B, 1952, 237(641), 37-72. doi: 10.1098/rstb.1952.0012

    CrossRef Google Scholar

    [39] V. K. Vanag and I. R. Epstein, Pattern formation mechanisms in reactiondiffusion systems, Int. J. Dev. Biol., 2009, 53(5-6), 673-681. doi: 10.1387/ijdb.072484vv

    CrossRef Google Scholar

    [40] A. I. Volpert, Vitaly Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems, vol. 140, American Mathematical Soc., 1994.

    Google Scholar

    [41] W. Wang, X. Gao, Y. Cai, H. Shi and S. Fu, Turing patterns in a diffusive epidemic model with saturated infection force, J. Franklin. Inst., 2018, 355, 7226-7245. doi: 10.1016/j.jfranklin.2018.07.014

    CrossRef Google Scholar

    [42] J. Wang, J. Liang, Y. Liu and J. Wang, Zero singularities of codimension two in a delayed predator-prey diffusion system, Neurocomputing, 2017, 227, 10-17. doi: 10.1016/j.neucom.2016.07.060

    CrossRef Google Scholar

    [43] J. Wang, J. Shi and J. Wei, Predator-prey system with strong allee effect in prey, J. Math. Biol., 2011, 62(3), 291-331. doi: 10.1007/s00285-010-0332-1

    CrossRef Google Scholar

    [44] S. Wu and Y. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition, Nonlinear Anal. Real World Appl., 2019, 48, 12-39. doi: 10.1016/j.nonrwa.2019.01.004

    CrossRef Google Scholar

    [45] H. Wu and X. Wu, Bogdanov-Takens singularity for a system of reactiondiffusion equations, J. Math. Chem., 2016, 54(1), 120-136. doi: 10.1007/s10910-015-0553-z

    CrossRef Google Scholar

    [46] J. Wu and X. Zou, Traveling wave fronts of reaction-diffusion systems with Delay, J. Dynam. Differential Equations, 2001, 13(3), 651-687. doi: 10.1023/A:1016690424892

    CrossRef Google Scholar

    [47] R. Yang and Y. Song, Spatial resonance and Turing-Hopf bifurcations in the Gierer-Meinhardt model, Nonlinear Anal. Real World Appl., 2016, 31, 356-387. doi: 10.1016/j.nonrwa.2016.02.006

    CrossRef Google Scholar

    [48] T. Zhang, X. Liu, X. Meng and T. Zhang, Spatio-temporal dynamics near the steady state of a planktonic system, Comput. Math. Appl., 2018, 75(12), 4490- 4504. doi: 10.1016/j.camwa.2018.03.044

    CrossRef Google Scholar

    [49] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Diff. Eqs., 2009, 246(5), 1944-1977. doi: 10.1016/j.jde.2008.10.024

    CrossRef Google Scholar

    [50] W. Zuo and J. Wei, Stability and Hopf bifurcation in a diffusive predator-prey system with delay effect, Nonlinear Anal. Real World Appl., 2011, 12(4), 1998-2011. doi: 10.1016/j.nonrwa.2010.12.016

    CrossRef Google Scholar

Figures(10)  /  Tables(1)

Article Metrics

Article views(7916) PDF downloads(2039) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint