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Abstract In this paper, the nonlinear Volterra-Fredholm integro-differential
equations are solved by using the homotopy analysis method (HAM). The
approximation solution of this equation is calculated in the form of a series
which its components are computed easily. The existence and uniqueness
of the solution and the convergence of the proposed method are proved. A
numerical example is studied to demonstrate the accuracy of the presented
method.
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1. Introduction

Since many physical problems are modeled by integro-differential equations, the
numerical solutions of such integro-differential equations have been highly studied
by many authors. In recent years, numerous works have been focusing on the
development of more advanced and efficient methods for integral equations and
integro-differential equations for example [2, 3, 5, 8, 9, 10, 11, 21]. The homotopy
analysis method (HAM) is based on homotopy, a fundamental concept in topology
and differential geometry [18]. The HAM has successfully been applied to many
situations [1, 2, 6, 7, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In [4] we had studied the
high-order nonlinear Volterra-Fredholm integro-differential equation by using HAM
of the form

k∑
j=0

pj(x)y
(j)(x) =f(x) + µ1

∫ x

a

k1(x, t) G1

(
y(p)(t)

)
dt

+ µ2

∫ b

a

k2(x, t) G2

(
y(m)(t)

)
dt, 0 ≤ p,m ≤ k.
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In this study, we develop HAM to solve the high-order nonlinear Volterra-Fredholm
integro-differential equations as follows:

k∑
j=0

pj(x)y
(j)(x) = f(x) + µ1

∫ x

a

k1(x, t) G1

(
y(p)(t)

)
dt

+ µ2

∫ b

a

k2(x, t) G2

(
y(m)(t)

)
dt, 0 ≤ p,m ≤ k,

(1.1)

with initial conditions

y(r)(a) = br, r = 0, 1, 2, . . . , k − 1, (1.2)

where a, b, µ1, µ2, br are constant values, f(x), k1(x, t), k2(x, t), G1(y(t)), G2(y(t))
and pj(x), j = 0, 1, . . . , k are functions that have suitable derivatives on an interval
a ≤ t ≤ x ≤ b and pk(x) ̸= 0.

The paper is organized as follows. In section 2, the HAM is briefly presented. In
section 3, this method is presented for solving (2.1). Also, the existence and unique-
ness of the solution and convergence of the proposed method are proved. Finally,
a numerical example and computational complexity of the proposed algorithm are
shown in section 4.

2. Preliminaries

Consider
N [y] = 0,

where N is a nonlinear operator, y(x) is an unknown function and x is an indepen-
dent variable. Let y0(x) denote an initial guess of the exact solution y(x), h ̸= 0
an auxiliary parameter, H(x) ̸= 0 an auxiliary function, and L an auxiliary linear
operator with the property L[r(x)] = 0 when r(x) = 0. Then using q ∈ [0, 1] as an
embedding parameter, we construct a homotopy as follows:

(1−q)L
[
ϕ(x; q)−y0(x)

]
−qhH(x)N

[
ϕ(x; q)

]
= Ĥ

[
ϕ(x; q); y0(x),H(x), h, q

]
. (2.1)

It should be emphasized that we have great freedom to choose the initial guess
y0(x), the auxiliary linear operator L, the non-zero auxiliary parameter h, and the
auxiliary function H(x).

Enforcing the homotopy (2.1) to be zero, i.e.,

Ĥ
[
ϕ(x; q); y0(x),H(x), h, q

]
= 0, (2.2)

we have the so-called zero-order deformation equation

(1− q)L
[
ϕ(x; q)− y0(x)

]
= qhH(x)N

[
ϕ(x; q)

]
. (2.3)

When q = 0, the zero-order deformation (2.3) becomes

ϕ(x; 0) = y0(x), (2.4)

and when q = 1, since h ̸= 0 and H(x) ̸= 0, the (2.3) is equivalent to

ϕ(x; 1) = y(x). (2.5)
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Thus, according to (2.4) and (2.5), as the embedding parameter q increases from 0
to 1, ϕ(x; q) varies continuously from the initial approximation y0(x) to the exact
solution y(x). Such a kind of continuous variation is called deformation in homotopy
[12].

Due to Taylor’s theorem, ϕ(x; q) can be expanded in a power series of q as follows

ϕ(x; q) = y0(x) +

∞∑
m=1

ym(x)qm, (2.6)

where

ym(x) =
1

m!

∂mϕ(x; q)

∂qm
|q=0 .

Let the initial guess y0(x), the auxiliary linear parameter L, the nonzero aux-
iliary parameter h and the auxiliary function H(x) be properly chosen so that the
power series (2.6) of ϕ(x; q) converges at q = 1, then, we have under these assump-
tions the solution series

y(x) = ϕ(x; 1) = y0(x) +
∞∑

m=1

ym(x). (2.7)

From (2.6), we can write (2.3) as follows

L
[ ∞∑
m=1

ym(x) qm
]
− qL

[ ∞∑
m=1

ym(x)qm
]
= qhH(x)N

[
ϕ(x, q)

]
. (2.8)

By differentiating (2.8) m times with respect to q, we obtain

m! L
[
ym(x)− ym−1(x)

]
= hH(x)m

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0 .

Therefore,

L
[
ym(x)− χmym−1(x)

]
= hH(x)ℜm

(
ym−1(x)

)
,

ym(0) = 0,
(2.9)

where,

ℜm

(
ym−1(x)

)
=

1

(m− 1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (2.10)

and

χm =

{
0 m ≤ 1,
1 m > 1.

Note that the high-order deformation (2.9) is governing the linear operator L,
and the term ℜm(ym−1(x)) can be expressed simply by (2.10) for any nonlinear
operator N .
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3. Description of the method

To obtain the approximation solution of (1.2) based on the HAM, let

N [y] = y(x)− L−1
( f(x)

pk(x)

)
−

k−1∑
r=0

1

r!
(x− a)rbr

− µ1L
−1

(∫ x

a

k1(x, t)

pk(x)
G1

(
y(p)(t)

)
dt
)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)
y(j)(x)

)
− µ2L

−1
(∫ b

a

k2(x, t)

pk(x)
G2

(
y(m)(t)

)
dt
)
= 0,

where L−1 is the multiple integration operator as follows:

L−1(.) =

∫ x

a

∫ x

a

. . .

∫ x

a

(.)dxdx . . . dx , (k times).

We obtain the term
∑k−1

r=0
1
r! (x− a)rbr from the initial conditions. We have

ℜm

(
ym−1(x)

)
= ym−1(x)− µ1L

−1
(∫ x

a

k1(x, t)

pk(x)
G1

(
y
(p)
m−1(t)

)
dt
)

− µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
G2

(
y
(m)
m−1(t)

)
dt
)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)
y
(j)
m−1(x)

)

− (1− χm)
(
L−1

( f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr

)
, m ≥ 1.

(3.1)

Substituting (3.1) into (2.9),

L
[
ym(x)− χmym−1(x)

]
= hH(x)

[
ym−1(x)− µ1L

−1
( ∫ x

a

k1(x, t)

pk(x)
G1

(
y
(p)
m−1(t)

)
dt
)

− µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
G2

(
y
(m)
m−1(t)

)
dt
)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)
y
(j)
m−1(x)

)

− (1− χm)
(
L−1

( f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr

)]
.

(3.2)

We take an initial guess y0(x) = F (x) = L−1
( f(x)
pk(x)

)
+

∑k−1
r=0

1
r! (x − a)rbr, an

auxiliary nonlinear operator Ly = y, a nonzero auxiliary parameter h = −1, and
auxiliary function H(x) = 1. This is substituted into (3.2) to give the recurrence
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relation

y0(x) = L−1
( f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr,

ym(x) = µ1L
−1

(∫ x

a

k1(x, t)

pk(x)
G1

(
y
(p)
m−1(t)

)
dt
)
− L−1

( k−1∑
j=0

pj(x)

pk(x)
y
(j)
m−1(x)

)
+ µ2L

−1
(∫ b

a

k2(x, t)

pk(x)
G2

(
y
(m)
m−1(t)

)
dt
)
, m ≥ 1.

(3.3)

Relation (3.3) will enable us to determine the components ym(x) recursively for
m ≥ 0.

Since pk(x) ̸= 0,we can write (1.2) in the form

y(x) = L−1
( f(x)

pk(x)

)
+

k−1∑
r=0

1

r!
(x− a)rbr + µ1L

−1
(∫ x

a

k1(x, t)

pk(x)
G1

(
y(p)(t)

)
dt
)

+ µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
G2

(
y(m)(t) dt

))
− L−1

( k−1∑
j=0

pj(x)

pk(x)
y(j)(x)

)
.

(3.4)

The following relations has been mentioned in [21]:

L−1
(∫ x

a

k1(x, t)

pk(x)
G1

(
y(p)(t)

)
dt
)
=

1

k!

∫ x

a

(x− t)k
k1(x, t)

pk(x)
G1

(
y(p)(t)

)
dt, (3.5)

k−1∑
j=0

L−1
( pj(x)
pk(x)

)
y(j)(t) =

k−1∑
j=0

1

k!

∫ x

a

(x− t)k
pj(x)

pk(x)
y(j)(t) dt. (3.6)

By substituting (3.5) and (3.6) in (3.4), we obtain

y(x) = F (x) + µ2

∫ b

a

L−1
(k2(x, t)
pk(x)

)
G2

(
y(m)(t)

)
dt

+
µ1

k!

∫ x

a

(x− t)k
k1(x, t)

pk(x)
G1

(
y(o)(t)

)
dt

−
k−1∑
j=0

1

k!

∫ x

a

(x− t)k
pj(x)

pk(x)
y(j)(t) dt.

(3.7)

In (3.7), we assume that F (x) is bounded for all t in C = [a, b] and∣∣∣∣µ1k1(x, t)(x− t)k

k! pk(x)

∣∣∣∣ ≤M
′
,

∣∣∣∣µ2L
−1(

k2(x, t)

pk(x)
)

∣∣∣∣ ≤M
′′
,∣∣∣∣ (x− t)kpj(x)

pk(x) k!

∣∣∣∣ ≤Mj , j = 0, 1, ..., k − 1 ,∀a ≤ t ≤ x ≤ b.

Also, we suppose the nonlinear terms G1

(
y(p)(t)

)
, G2

(
y(m)(t)

)
and Dj(y(t)) =

dj

dtj y(t) are Lipschitz continuous with

|G1(y
(p))−G1(y

∗(p))| ≤ L
′
|y(p) − y∗(p)|,

|G2(y
(p))−G2(y

∗(p))| ≤ L
′′
|y(m) − y∗(m)|,

|Dj(y)−Dj(y∗)| ≤ Lj |y − y∗| for j = 0, 1, ..., k − 1.
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If we set,

α = (L
′
M

′
+ L

′′
M

′′
+ kLM)(b− a),

M = max|Mj |, L = max|Lj |, j = 0, 1, ..., k − 1,

then the following theorems can be proved by using the above assumptions.

Theorem 3.1. The nonlinear Volterra-Fredholm integro-differential equation in
(1.2) has a unique solution whenever 0 < α < 1.

Proof. Let y and y∗ be two different solutions of (3.7), then

|y − y∗| =|
∫ x

a

µ1k1(x, t)(x− t)k

pk(x)k!

[
G1(y)−G1(y

∗)
]
dt

+

∫ b

a

µ2L
−1(

k2(x, t)

pk(x)
)
[
G2(y)−G2(y

∗)
]
dt

−
k−1∑
j=0

∫ x

a

(x− t)kpj(x)

pk(x) k!

[
Dj(y)−Dj(y∗)

]
dt|

≤
∫ x

a

|µ1k1(x, t)(x− t)k

pk(x)k!
| |G1(y)−G1(y

∗)|dt

+

∫ b

a

|µ2L
−1(

k2(x, t)

pk(x)
)| |G2(y)−G2(y

∗)|dt

+
k−1∑
j=0

∫ x

a

| (x− t)k pj(x)

pk(x)k!
| |Dj(y)−Dj(y∗)|dt

≤ (b− a)(L
′
M

′
+ L

′′
M

′′
+ kLM)|y − y∗|,

from which we get (1− α)|y − y∗| ≤ 0. Since 0 < α < 1, so |y − y∗| = 0, therefore
y = y∗ and this completes the proof.

Theorem 3.2. If the series solution y(x) =
∑∞

m=0 ym(x) obtained from (3.3) is
convergent then it converges to the exact solution of the problem (1.2).

Proof. We assume:

y(j)(x) =
∑∞

m=0 y
(j)
m (x),

S1

(
y(p)(x)

)
=

∑∞
m=0 G1

(
y
(p)
m (x)

)
,

S2

(
y(m)(x)

)
=

∑∞
m=0 G2

(
y
(m)
m (x)

)
,

(3.8)

where,
lim

m→∞
ym(x) = 0.

We can write

n∑
m=1

[
ym(x)− χmym−1(x)

]
= y1 + (y2 − y1) + ...+ (yn − yn−1) = yn(x). (3.9)

Hence, from (3.9),
lim

n→∞
yn(x) = 0. (3.10)
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So using (3.10) and the definition of the linear operator L, we have

∞∑
m=1

L
[
ym(x)− χmym−1(x)

]
= L

[ ∞∑
m=1

[
ym(x)− χmym−1(x)

]]
= 0.

Therefore, from (2.9) we can obtain that

∞∑
m=1

L
[
ym(x)− χmym−1(x)

]
= hH(x)

∞∑
m=1

ℜm

(
ym−1(x)

)
= 0.

Since h ̸= 0 and H(x) ̸= 0, we have

∞∑
m=1

ℜm

(
ym−1(x)

)
= 0. (3.11)

By applying the relations (3.1) and (3.8),

∞∑
m=1

ℜm

(
ym−1(x)

)
=

∞∑
m=1

[
ym−1 − µ1L

−1
(∫ x

a

k1(x, t)

pk(x)
G1

(
y
(p)
m−1(t)

)
dt
)

− µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
G2

(
y
(m)
m−1(t)

)
dt
)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)
y
(j)
m−1(x)

)
− (1− χm)F (x)

]
= y(x)− F (x)− µ1L

−1
(∫ x

a

k1(x, t)

pk(x)

[ ∞∑
m=1

G1(y
(p)
m−1(t))

]
dt
)

− µ2L
−1

(∫ b

a

k2(x, t)

pk(x)

[ ∞∑
m=1

G2

(
y
(m)
m−1(t)

)]
dt

)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)

[ ∞∑
m=1

y
(j)
m−1(x)

])
= y(x)− F (x)− µ1L

−1
(∫ x

a

k1(x, t)

pk(x)
S1

(
y(p)(t)

)
dt
)

− µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
S2

(
y(m)(t)

)
dt
)
+ L−1

( k−1∑
j=0

pj(x)

pk(x)
y(j)(x)

)
.

(3.12)

From (3.11) and (3.12), we have

y(x) = F (x) + µ1L
−1

(∫ x

a

k1(x, t)

pk(x)
S1

(
y(p)(t)

)
dt
)

+ µ2L
−1

(∫ b

a

k2(x, t)

pk(x)
S2

(
y(m)(t)

)
dt
)
− L−1

( k−1∑
j=0

pj(x)

pk(x)
y(j)(x)

)
,

therefore, y(x) must be the exact solution of (1.2).
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4. Numerical examples

In this section, we compute a numerical example which is solved by the HAM .
The programs have been provided with mathematica 6 according to the following
algorithms where ε is a given positive value.

Algorithm:

Step 1. n← 0,
Step 2. Calculate the recursive relation using (3.3),
Step 3. If | yn+1 − yn |< ε then go to step 4 else n← n+ 1 and go to step 2,
Step 4. Print y(x) =

∑n
i=0 yi as the approximate of the exact solution.

Lemma 4.1. The computational complexity of the algorithm is O(k2 + n).

Proof. The number of computations including division, production, sum and sub-
traction and without considering the number of computations in the term

k−1∑
j=0

L−1
( pj(x)
pk(x)

y(j)n (x)
)
, n ≥ 1.

In step 2,

y0 : k2

2 + 9
2k + 2,

y1 : 7,
...
yn+1 : 7, n ≥ 0.

In step 4, the total number of the computations is equal to

y0 +
n∑

i=1

yi = 7n+
k2

2
+

9

2
k + 2 = O(k2 + n).

Example 4.1. Let us now study the nonlinear integro-differential equation

u′′(x)+xu′(x) = ex(2+x2+3x)−(0.5892858)x+
∫ x

0

[u(t)]2dt+

∫ 0.5

0

xt(1+u(t))2dt,

with initial conditions u(0) = 0, u′(0) = 1. The exact solution is u(x) = xex.
ϵ = 10−3 and α = 0.350099.

Table 1 Numerical results for Example 4.1

x App.Sol (n = 3) Errors
0.05 0.0528836 0.00071584
0.1 0.1118610 0.00127473
0.12 0.1372840 0.00146522
0.15 0.1775160 0.00163066
0.2 0.2505650 0.00196136
0.25 0.3318580 0.00217893
0.3 0.4223900 0.00235548
0.35 0.5233110 0.00268905
0.4 0.6359360 0.00297645
0.45 0.7617640 0.00314973
0.5 0.9024930 0.00347981
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Table 1 shows that, the approximation solution of the nonlinear Fredholm-
Volterra integral equation is convergent with 3 iterations by using the HAM.

5. Conclusion

Homotopy analysis method has been known as a powerful scheme for solving many
functional equations such as algebraic equations, ordinary and partial differential
equations, integral equations and so on. The HAM has been shown to solve effec-
tively, easily and accurately a large class of nonlinear problems with the approxi-
mations which are rapidly convergent to the exact solution. In this work, the HAM
has been successfully employed to obtain the approximate or analytical solution of
the nonlinear Volterra-Fredholm integro-differential equations.
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