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Abstract Data generated in forestry biometrics are not normal in statistical
sense as they rarely follow the normal regression model. Hence, there is a
need to develop models and methods in forest biometric applications for non-
normal models. Due to generality of Bayesian methods it can be implemented
in the situations when Gaussian regression models do not fit the data. Data
on diameter at breast height (dbh), which is a very important characteristic in
forestry has been fitted to Weibull and gamma models in Bayesian paradigm
and comparisons have also been made with its classical counterpart. It may
be noted that MCMC simulation tools are used in this study. An attempt has
been made to apply Bayesian simulation tools using R software.
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1. Introduction

Diameter distributions are important tools for the study of various features of a
tree. Once we know the diameter at breast height, 1.37m, on all the sample of trees
we can predict the volume, height etc. A plot specific height diameter relationship
was used to determine height of any remaining trees in the plot.The comprehension
of diameter distribution will affect the decision of growing and cultivation of trees as
well as harvesting decisions such as where and when to harvest. In various growth
models diameter distribution are used as input variable (Robinson and Hamann,
2011). As a result, statistical study of diameter is required in the form of its model
fitting and related model prediction. Most common model that is normal model
does not provide good fit in fitting diameter of a tree and hence, other models
like Weibull and gamma distributions which are skewed in nature may be tried and
model comparison studies tell the better goodness of fit of these models as compared
to normal. We have the model of the form

y = β0 + β1x+ e,

where y is the response variable, x is the input variable, β0 is the intercept and
β1 is the regression coefficient of y on x. Our goal is to construct a relationship
between height (y) and diameter (x). As height of tree follows normal distribution,
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then obviously the fitting of height given diameter i.e., height as response variable
and diameter as input variable will also follow normal distribution. On the other
hand, if the fitting of regression model is done with volume (as response variable)
and diameter (as input variable) then, the skewed distribution either Weibull or
gamma would be the better fit and normal distribution will not be our choice. For
estimating the parameter of a linear regression model, we have two approaches; one
is the classical approach and second is the Bayesian approach. In classical approach,
maximum likelihood method is the most common method of inference, which has
certain drawbacks like most of its properties hold only for large sample size and
things are not clear if sample size is small. For example, asymptotic normality of
MLE forces the analyst to keep sampling distribution in a symmetric form. On
the other hand, there are instances in which Bayesian approach, which is free from
such limitations shows that the posterior density is not symmetric even if sample
size is large. Moreover, Bayesian simulation tools provide exact method of inference
even if sampler size is very small. Thus, Bayesian methods are superior over the
classical methods. That is why, in this paper, we have adopted this method of
inference for the modeling of forestry data. The software package used in this paper
for summarization of posterior inference is LaplacesDemon package. This and
related package will be discussed in Section 4. In Bayesian paradigm, data and
prior are combined together to make inference about the parameter of interest.
The formal basis of this approach is provided by the Bayes’ rule, which is simply
expressed as

p(θ|y) ∝ p(y|θ)p(θ).

Here, p(θ) is the prior distribution, p(y|θ) is the likelihood, and p(θ|y) is the posterior
distribution. For fitting of data we use weakly informative prior distributions as we
feel that we have very little prior knowledge about the model parameters.

2. Upper Flat Creek Forest Cruise tree data (UFC)

This data is available in FAwR package in R software. It is in the form of data frame
with 336 rows and 5 columns. This was generated in 1991 from the Upper Flat Creek
unit of the University of Idaho Experimental Forest. This data frame consists of 5
variables, namely, plot, trees, species, dbh.cm and height.m. However, diameter at
breast height measured in centimeter, dbh.cm is the most important characteristic
for analysis. To load the library FAwR which is meant for forest analysis with R, we
use the function library as

library(FAwR)

To load the data ufc, use the function data as

data(ufc)

To print the names of the variables

names(ufc)

"plot" "tree" "species" "dbh.cm" "height.m"

The data frame ufc has 336 rows and 5 columns but we can display only the few
rows by using the function head
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head(ufc)

plot tree species dbh.cm height.m

1 2 1 DF 39 20.5

2 2 2 WL 48 33.0

3 3 2 GF 52 30.0

4 3 5 WC 36 20.7

5 3 8 WC 38 22.5

6 4 1 WC 46 18.0

3. Fitting statistical distribution

We have already discussed in Section 1 about the importance of diameter distribu-
tion. Diameter distributions are sometimes used as the subject of growth modeling
themselves. Now, we will fit three distributions one by one and will see which one
of them will be the good fit on the basis of model comparison methods, deviance,
Bayesian information criterion (BIC) and Akaike information criterion (AIC).

3.1. Fitting of Weibull distribution

Weibull distribution has two parameters, shape and scale. It can be denoted as

y ∼ W (α, β)

thus, the likelihood is

p(y|α, β) =
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which implies log-likelihood as
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This loglikelihood is expressed in R as

loglikelihood<-sum(dweibull(x=y,shape=alpha,scale=beta,log=T))

Since both the parameters are positive, therefore, priors for both shape and scale
parameters of Weibull is half-Cauchy with scale parameter 25. Consequently, log-

prior for shape and scale parameters are log
(

2×25
π(shape2+252)

)
and log

(
2×25

π(scale2+252)

)
,

respectively, which can be expressed in R as

shape.prior<-dhalfcauchy(shape,25,log=T)

scale.prior<-dhalfcauchy(scale,25,log=T)

Thus,
logposterior = loglikelihood + shape.prior + scale.prior

Bayesian fitting can be done in R by using the function optim which is a general
purpose function for unrestricted optimization. It requires negative of log of the
posterior as an argument and a vector of values to start iterations in the optimization
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algorithm. The default algorithm in optim is that of Nelder and Mead (1965), which
is essentially a simplex algorithm and does not require derivatives of the objective
function. Contrary to Newton Raphson method of optimization this works well even
if guess values are far from the optimum. In Weibull model, since both shape and
scale are restricted parameters, therefore, a logarithmic transformation is required
to make them unrestricted.

Now, we write a function, namely nlwp which returns negative of the logposterior
as defined above

nlwp<-function(theta,data)

{

shape<-exp(theta[1])

scale<-exp(theta[2])

ll<-dweibull(data,shape,scale,log=T)

ll<-sum(ll)

lp.shape<-dhalfcauchy(shape,25,log=T)

lp.scale<-dhalfcauchy(scale,25,log=T)

lpost<-ll+lp.shape+lp.scale

return(-lpost)

}

For Bayesian fitting of Weibull distribution the function optim is used as

M1<-optim(par=c(shape=log(1),scale=log(180)),fn=nlwp,hessian=TRUE,

data=ufc$dbh.cm)

The outputs obtained from the fitted object M1 are summarized in Table 1. However,
R codes for fitting normal and gamma models with the same priors are not reported
just to save the space.

Table 1. Posterior summaries for each parameter of the distribution.

Weibull Normal Gamma
shape scale mean sd shape scale

Posterior mode 2.30 42.3 37.3 17.3 4.63 0.12
Posterior sd 1.04 1.02 0.94 1.04 1.07 1.08

3.2. Model comparison

To compare the three models; namely Weibull, gamma and normal, the model
selection criterion preferred by the Bayesians and likelihoodists are Deviance, AIC
(Akaike information criterion) and BIC (Bayesian information criterion), which are
defined as

Deviance =− 2 loglikelihood,

AIC =− 2 loglikelihood + 2k,

BIC =− 2 loglikelihood + k logn,

where k is the number parameters in the model and n stands for number of obser-
vations. According to this criterion the distribution having the lesser value of BIC
and AIC is the best fit. We have the following Deviance, BIC and AIC values:
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Table 2. It may be noted that gamma is the best fit as it has least value of the model comparison
criteria.

Model Deviance BIC AIC
Weibull 2833 2837 2862
Normal 2868 2872 2908
Gamma 2819 2823 2846

These results suggest that the two parameter gamma distribution has the lesser
value so, is a better fit to our data than the Weibull and normal distributions.

3.3. Graphic comparison of the three distributions

The graphical summary which is shown in Figure 1 clearly shows that gamma
distribution provides a better fit than the Weibull and Weibull provides better
fit than the normal. This fact is supported by the BIC values also. The gamma
distribution has the smallest BIC (2823) whereas the normal distribution has largest
BIC (2872). Thus, on the basis of graphics as well as numeric evidences gamma
distribution provides the best fit followed by Weibull and normal is the last choice
in model selection.

Figure 1. Plots of fitted models, namely, Weibull, normal and gamma show that gamma is the best
choice for fitting diameter followed by Weibull and normal.

So far, only some aspects of posterior density are studied. A more compre-
hensive study follows in the next section using the LaplacesApproximation and
LaplacesDemon functions of LaplacesDemon package.

4. Bayesian fitting with LaplacesDemon

LaplacesDemon package can be used for Bayesian fitting. LaplaceApproximation
and LaplacesDemon are the two main functions of this package. The function
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LaplaceApproximation deterministically maximizes the logarithm of the unnor-
malized joint posterior density with one of several optimization algorithms. More-
over, it has the implementation of sampling importance resampling (SIR) algorith-
m to simulate observation from posterior. It is capable with any Bayesian mod-
el for which the likelihood is specified. LaplacesDemon is the implementation of
Markov chain Monte Carlo tools. It is a very comprehensive function which imple-
ments around 25 MCMC algorithms. Most efficient among them is the Independent
Metropolis algorithm as it has the high acceptance rate, but requires posterior mode
and modal variance which are obtained from LaplaceApproximation. To use these
two functions the user must specify a model, a prior for parameters and a data
object which is required for fitting.

4.1. Fitting of diameter with normal distribution

The study of diameter is already emphasized in Section 1. Its fitting details
which includes code for creation of data, definition of model and its fitting with
LaplaceApproximation are reported as

## Creation of data

library(LaplacesDemon)

library(FAwR)

data(ufc)

y<-ufc$dbh.cm

X<-matrix(1,nrow=length(y))

J<-1

mon.names<-c("LP","sigma")

parm.names<-as.parm.names(list(beta=rep(0,J),log.sigma=0))

MyData<-list(J=J,X=X,mon.names=mon.names,parm.names=parm.names,y=y)

## Initial values

Initial.Values<-c(rep(0,J),log(1))

## Model specification

Model <- function(parm, Data)

{

beta<-parm[1:Data$J]

sigma<-exp(parm[Data$J+1])

beta.prior<-sum(dnormv(beta,0,10000,log=T))

sigma.prior<-dhalfcauchy(sigma,25,log=T)

theta<-tcrossprod(Data$X,t(beta))

LL<-sum(dnorm(Data$y,theta,sigma,log=T))

LP<-LL+beta.prior+sigma.prior

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,sigma),

yhat=rnorm(length(theta),theta,sigma),parm=parm)

return(Modelout)

}

## Fitting with LaplaceApproximation

M1<-LaplaceApproximation(Model,Initial.Values,Data=MyData,

Iterations=10000)
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Fitting of diameter with Weibull and gamma models is not shown in this document
to save the space but their posterior summary is reported in Table 3 and Table 4
and also their graphical posterior summary plots are reported in Figure 2.

Table 3. Posterior summaries obtained from fitted object M1 are reported for the three distributions.
These summaries are based on SIR algorithm which is implicit in the LaplaceApproximation. It may be
noted that LB and UB are quantiles (0.025 and 0.975)

Weibull Normal Gamma
beta shape beta sigma beta shape

Mean 3.74 2.29 37.40 17.30 2.10 4.60
SD 0.03 0.10 0.99 0.67 0.08 0.34
LB 3.69 2.10 35.30 16.10 1.90 4.00

Median 3.74 2.29 37.40 17.30 2.10 4.60
UB 3.79 2.48 39.20 18.60 2.20 5.30

## Fitting with LaplacesDemon

Initial.Values<-as.initial.values(M1)

M10<-LaplacesDemon(Model,Data=MyData,Initial.Values,

Covar=M1$Covar,Algorithm="IM",Iterations=5000,

Specs=list(mu=M1$Summary1[1:length(Initial.Values),1]))

Table 4. Posterior summaries obtained from fitted object M10 are reported for the three distributions.
These summaries are based on IM algorithm which is an argument in LaplacesDemon function.

Weibull Normal Gamma
beta shape beta sigma beta shape

Mean 3.74 2.30 37.40 17.30 2.10 4.70
SD 0.01 0.06 0.58 0.39 0.05 0.22
LB 3.72 2.19 36.30 16.50 2.00 4.30

Median 3.74 2.30 37.40 17.30 2.10 4.60
UB 3.77 2.41 38.50 18.00 2.20 5.10

4.2. Graphical summary

The graphical presentation can be summarized by caterpillar plots for all the three
distributions. However, to save the space caterpillar plot corresponding Weibull and
normal is not reported. Caterpillar plots are popular plots in Bayesian inference
for summarizing the quantiles of posterior samples. A caterpillar plot is similar
to a horizontal box plots making it easier to study more distribution in a single
plot. The plot in Figure 3 shows a caterpillar plot of the parameters of the gamma
distribution. In this plot quantiles (LB, Median and UB) are plotted as a line for
each parameter. The median appears as a black dot. A vertical, gray line is included
at zero. Both the parameters are statistically significant as the vertical dotted line
does not cross the horizontal lines.

4.3. Model comparison for diameter

Model comparison is summarized in Table 5. On the basis of this table it is suggested
that gamma distribution is the best fit as gamma distribution has least value of
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Figure 2. Posterior densities of the parameter of normal model are reported in the top panel whereas
Weibull and gamma models are reported in the bottom.

Figure 3. Posterior summarization through caterpillar plot of gamma model.

deviance, BIC and AIC in the case of fitting of diameter.

5. Bayesian regression analysis: Fitting of normal
model

In this section sweetgum data is used to fit normal regression model for volume
given diameter. This data is a part of FAwR package. This data is in form of data
frame with 39 tree-level observations on 8 variables, namely, plot, tree, dbh.in,
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Table 5. Model comparison of the distributions for the fitting of diameter distribution. Gamma is the
best choice on the basis of this table as it has least value of the model comparison criterion.

Model Deviance BIC AIC
Normal 2869.50 2881.10 2873.50
Weibull 2834.66 2846.26 2838.66
Gamma 2820.60 2832.20 2824.60

stump.ht.ft, height.ft, height.m, dbh.cm, vol.m3. Here, fitting is done between
volume (vol.m3) as response variable and diameter (dbh.cm) as input variable.

5.1. Bayesian regression model

Bayesian model consists of the likelihood and prior for the parameters. Fitting with
R is also discussed in this section.

5.1.1. The model

Let’s consider a normal linear regression model, which is often denoted as:

y ∼ N(µ, σ2),

where µ = Xβ and σ2 is the variance. It may be noted that X is model matrix and
β is the vector of regressors.

5.1.2. The prior

The prior for each component of β is a normal distribution, whereas prior for σ is
half Cauchy with scale 25. These priors are proper but almost flat in the relevant
region of parameters. Thus, they are weakly informative priors

β ∼ N(0, 1000),

σ ∼ HC(25).

5.1.3. The R commands

Creation of data and definition of Bayesian model in R for the purpose of fitting
are being described now:

## Creation of data

library(LaplacesDemon)

library(FAwR)

data(sweetgum)

x<-sweetgum$dbh.cm

X<-cbind(1,x)

y<-sweetgum$vol.m3

J<-2

mon.names<-c("LP","sigma")

parm.names<-as.parm.names(list(beta=rep(0,J),log.sigma=0))
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MyData<-list(J=J,X=X,mon.names=mon.names,parm.names=parm.names,y=y)

## Initial values

Initial.Values<-c(rep(0,J),log(1))

## Model specification

Model <- function(parm, Data)

{

beta<-parm[1:Data$J]

sigma<-exp(parm[Data$J+1])

beta.prior<-sum(dnorm(beta,0,10000,log=T))

sigma.prior<-dhalfcauchy(sigma,25,log=T)

theta<-tcrossprod(Data$X,t(beta))

LL<-sum(dnorm(Data$y,theta,sigma,log=T))

LP<-LL+beta.prior+sigma.prior

Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,sigma),

yhat=rnorm(length(theta),theta,sigma),parm=parm)

return(Modelout)

}

## Fiting with LaplaceApproximation

M2<-LaplaceApproximation(Model,Initial.Values,Data=MyData,

Iterations=10000)

The commands for the fitting of Weibull and gamma model are similar to that of
normal. The differences are only in the definition of log-likelihoods. The simulated
posterior summary of all the three regression models for volume given diameter is
reported in Table 6 and Table 7, respectively.

Table 6. Posterior summary of normal, Weibull and gamma regression models for sweetgum data using
SIR.

Normal
Mean SD LB Median UB

beta[1] -1.83 0.17 -2.14 -1.82 -1.34
beta[2] 0.09 0.00 0.08 0.09 0.10
sigma 0.41 0.05 0.33 0.41 0.57

Weibull
Mean SD LB Median UB

beta[1] -1.91 0.12 -2.15 -1.91 -1.68
beta[2] 0.05 0.00 0.05 0.06 0.06
shape 4.66 0.63 3.53 4.65 5.92

Gamma
Mean SD LB Median UB

beta[1] -4.63 0.26 -5.11 -4.64 -4.09
beta[2] 0.06 0.00 0.05 0.06 0.06
shape 13.80 3.24 8.05 13.53 20.43

## Fitting with LaplacesDemon

Initial.Values<-as.initial.values(M2)
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M20<-LaplacesDemon(Model,Data=MyData,Initial.Values,

Covar=M2$Covar,Algorithm="IM",Iterations=5000,

Specs=list(mu=M2$Summary1[1:length(Initial.Values),1]))

Table 7. Posterior summary of normal, Weibull and gamma regression models for sweetgum data using
IM algorithm.

Normal
Mean SD LB Median UB

beta[1] -1.82 0.09 -2.00 -1.82 -1.66
beta[2] 0.09 0.00 0.09 0.09 0.10
sigma 0.40 0.03 0.35 0.40 0.45

Weibull
Mean SD LB Median UB

beta[1] -1.91 0.07 -2.05 -1.91 -1.77
beta[2] 0.05 0.00 0.05 0.06 0.06
shape 4.79 0.37 4.11 4.79 5.47

Gamma
Mean SD LB Median UB

beta[1] -4.71 0.16 -5.02 -4.71 -4.38
beta[2] 0.06 0.00 0.05 0.06 0.06
shape 14.58 2.03 10.78 14.44 18.97

5.2. Model comparison for volume given diameter

In the case of fitting of volume given diameter, Table 8 suggests that Weibul-
l distribution is the best fit (deviance=16.99) and also gamma distribution (de-
viance=20.83) is the second best fit.

Table 8. Models comparison for normal, Weibull and gamma regression models.

Model Deviance BIC AIC
Normal 39.18 50.28 45.18
Weibull 16.99 28.09 22.99
Gamma 20.83 31.93 26.83

6. Fitting of regression model for height given di-
ameter

Here again we use the same data ufc for illustrative purpose and will show the
results of fitting of height (height.m) as responce variable and diameter (dbh.cm)
as input variable. Posterior summary of Normal, Weibull and gamma regression
models for height given diameter after implementing LaplaceApproximation and
LaplacesDemon functions is reported in Table 9 and Table 10, respectively.
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Figure 4. Plots of normal and gamma regression models for volume given diameter, which shows the
posterior summary of their parameters respectively.

Table 9. Simulated posterior summary of normal, Weibull, and gamma models with SIR.

Normal
Mean SD LB Median UB

beta[1] 12.11 0.59 10.94 12.11 13.30
beta[2] 0.32 0.01 0.29 0.32 0.35
sigma 4.67 0.19 4.34 4.66 5.04

Weibull
Mean SD LB Median UB

beta[1] 2.80 0.03 2.70 2.80 2.80
beta[2] 0.01 0.00 0.01 0.01 0.01
shape 5.20 0.22 4.80 5.20 5.70

Gamma
Mean SD LB Median UB

beta[1] -0.27 0.09 -0.45 -0.27 -0.86
beta[2] 0.01 0.00 0.01 0.01 0.02
shape 18.00 1.50 16.00 18.00 22.00

6.1. Model comparison for height given diameter

On the basis of goodness of fit measures namely, deviance, BIC and AIC reported
in Table 11, it is clear that in the case of fitting regression model for height given
diameter, normal distribution is the best fit followed by Weibull and the last choice
is gamma.
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Table 10. Simulated posterior summary of normal, Weibull, and gamma models with IM algorithm

Normal
Mean SD LB Median UB

beta[1] 12.10 0.36 11.39 12.10 132.80
beta[2] 0.32 0.01 0.31 0.32 0.34
sigma 4.64 0.11 4.43 4.64 4.86

Weibull
Mean SD LB Median UB

beta[1] 2.80 0.02 2.70 2.76 2.80
beta[2] 0.01 0.00 0.01 0.01 0.01
shape 5.30 0.13 5.00 5.22 5.50

Gamma
Mean SD LB Median UB

beta[1] -0.28 0.05 -0.38 -.28 -0.19
beta[2] 0.01 0.00 0.01 0.01 0.02
shape 19.00 0.86 17.00 19.00 20.00

Table 11. Table for model comparison of the three distributions.

Model Deviance BIC AIC
Normal 1986.08 2003.48 1992.08
Weibull 2000.00 2017.40 2006.00
Gamma 2100.00 2117.40 2106.00

7. Discussion

It has been established thatR is a very powerful software package for Bayesian mod-
eling of forestry data (R Core Team (2014)). The function LapalaceApproximation

is the main function for the purpose of optimization in Bayesian scenario whereas
LaplacesDemon is the function which is meant for implementation of Markov chain
Monte Carlo simulation tools. In fitting diameter, gamma model is found to be the
best model followed by Weibull and normal. Contrary to this, in regression model-
ing a normal model was the best choice for regressing height on diameter followed
by Weibull and gamma models. However, when volume is regressed on diameter,
Weibull was the best model followed by gamma, and normal was the last choice.
The criterion for model selection which are used in this paper are Deviance, BIC
and AIC. However, as per recommendation of Gelman et al., (2003) deviance is the
best criteria for model selection. The code developed in R can be used in other
areas of regression modeling besides forestry because of their general nature and
paradigm. Finally, Bayesian approach is more suitable even if sample size is small
and it can be used very effectively in the modeling of forestry data wherein non
Guassian model like Weibull and gamma commonly fit. Undoubtedly, R enhances
the astonishing vigour of Bayesian approach.
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