
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 5, Number 2, May 2015, 177–188 doi:10.11948/2015016

A SOCIAL NETWORK MODEL WITH
PROXIMITY PRESTIGE PROPERTY∗

Yuli Zhao1 , Hai Yu1,†, Wei Zhang1, Wenhua Zhang1,
and Zhiliang Zhu1

Abstract In general, many real-world networks not only possess scale-free
and high clustering coefficient properties, but also have a fast information
transmission capability. However, the existing network models are unable to
well present the intrinsic fast information transmission feature. The initial
infected nodes and the network topology are two factors that affect the in-
formation transmission capability. By using preferential attachment to high
proximity prestige nodes and triad formation, we provide a proximity prestige
network model, which has scale-free property and high clustering coefficien-
t. Simulation results further indicate that the new model also possesses tun-
able information transmission capability archived by adjusting its parameters.
Moreover, comparing with the BA scale-free network, the proximity prestige
network PPNet05 achieves a higher transmission capability when messages
travel based on SIR and SIS models. Our conclusions are directed to possible
applications in rumor or information spreading mechanisms.
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1. Introduction

In the past two decades, research on complex networks has captured a great deal
of attentions. Complex networks are ubiquitous in nature and society, including
metabolic networks [8], the World Wide Web [2], social networks and scientific cita-
tion networks [17]. For these real-world networks, lots of measurements show that
some large-scale networks can self-organize into a scale-free state, which means that
the probability of a randomly selected node with degree k is Ak−γ , where γ is the
degree exponent and A is the normalized coefficient. In many real-world networks,
γ is a value in [2.1, 3]. Simultaneously, lots of real-world networks possess high aver-
age clustering coefficients, optimal controllability, strong resistance to attacks and
fast information transmission capability, etc. However, most existing network mod-
els emphasize on the scale-free and high clustering coefficient properties, ignoring
other intrinsic features such as the fast information transmission capability [15].

The BA network model, which generates a network with its degree distribution
following a power-law distribution with γ = 3, is a typical scale-free network with
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a low clustering coefficient value [3]. Further, the Extended-BA model [1] provides
a scale-free network with a range of exponents γ between 2 and ∞. Recently, some
scale-free network models with tunable power-law exponent and clustering coeffi-
cient have been proposed [4,6]. All of these models are used to generate undirected
networks. However, most real-world networks are directional, in which the number
of incoming links into a node is its in-degree and the number of outgoing edges is its
out-degree. The Price model was proposed as a directed scale-free network model
constructed by selecting the existed nodes with largest in-degree as neighbors of the
newly added node [12, 13, 16]. Recently, some directed network models have been
proposed to investigate and model the growth of citation networks [14], [5]. In the
citation network model, papers are represented by nodes, which are added sequen-
tially and all the out-link of a paper are added once the paper joins the network.
Nonetheless, in social networks, such as weibo networks and blog networks, once an
individual has been added into a network, it can get or transmit information from
or to the existed ones already in the network. Thus, the in-link of the newly added
one may be larger than zero.

An open problem about complex networks is to figure out how the structural
topology affects the epidemic or information spreading on the networks. To s-
tudy the information transmission capability of various networks, we apply the
susceptible-infectious-recovered (SIR) and susceptible-infectious-susceptible (SIS)
models [10, 11] on complex networks. These models have been used to describe
disease as well as information and rumor spreading in real-world networks [9]. It
has been proven that the topological structure and the choice of the initially in-
fected nodes are two factors which affect the spreading capacity of the network.
In general, the degree, betweenness centrality, and core value of nodes are used as
metrics to identify which node is more important for spreading in an undirected
network [9, 11]. In directed networks, the in-degree, size of the input domain and
proximity prestige are used to evaluate the prestige value of each node which reflect
the importance of different nodes.

In this paper, the proximity prestige is used to select the initially infected nodes
for a directed network model to accelerate the information spreading. In section 2,
the concept of proximity prestige and the network model using proximity prestige
are described, and in section 3, simulations are carried out and the features of the
proposed proximity prestige network are reported. In section 4, a conclusion is
drawn.

2. The Proximity Prestige Network

In the area of social network analysis, prestige is traditionally measured from struc-
tural metrics such as in-degree and proximity prestige values [7]. Proximity prestige
considers prestige of a node in its input domain, which includes all the nodes that
can directly or indirectly reach it.

For a complex network with N nodes, the proximity prestige [19] of node i is
defined by

f(i) =
|Ωi|2

(N − 1)
∑

j∈Ωi
dji

, (2.1)

where Ωi denotes the input domain of node i which contains all the nodes that have
at least one path to node i in the network. The shortest path length from j to i
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is denoted by dji. Figure 1 shows a network with 10 nodes and 9 edges, where the
proximity prestige of each node calculated according to equation (2.1) is listed in
the bracket near the node.
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Figure 1. Proximity prestige of a directed network with 10 nodes

From Figure 1, it can be observed that although nodes 1 and 3 have the same
in-degree, node 1 achieves larger proximity prestige as the input domain size of node
1 is larger than that of node 3. Figure 1 also shows that the proximity prestige of
a node without in-degree is 0.

In general, the scale-free property of a complex network is accomplished by
preferential attachment, which means that the newly added nodes prefer to connect
with existed nodes with large degrees, rather than the ones with low degrees. In this
section, we suggest a proximity prestige network model, in which the newly added
node preferentially connects with the high proximity prestige nodes. In addition, it
has been shown that the real-world social networks always possess large clustering
coefficients, and a large clustering coefficient indicates more triangular structure in
the network. Therefore, to guarantee having a high clustering coefficient during
the network generation, the triangular structure is introduced to build the network
model.

With the aforementioned feature in mind, the proximity prestige network model
is starting from a finite network with m0 nodes and 0 edges. At each time step t,
a node i is introduced and m (m ≤ m0) directed edges are formed between i and
a set of nodes already existed in the network. Once a new node joins the network,
two steps are required to generate its m links, including (i) preferential attachment
step and (ii) the triad formation step. Specifically, for each node i added at time t,
m edges are formed by the following process:

(1) The preferential attachment (PA) step: an existed node v is selected with the
probability proportional to its proximity prestige, i.e., the probability for an
existed node v to be attached by i is

Θi =
f(i) + ρi∑

j∈V f(j) + |V | ∗ ρi
, (2.2)

where V = {n1, n2, ..., nN} is a set containing all the nodes in the complex
network at time t− 1, ρi =

a
|V | (a > 0), which is used to guarantee a certain

probability of node with proximity prestige 0 to have a chance to receive new
edges. If node v is selected according to probability (2.2), a link from node
i to node v is attached, i.e. node v is a following node of i, and node i is
followed by v.

(2) The triad formation (TF) step: Let set P contain the following nodes of node
v selected in the previous PA step. A set Q is defined to store all nodes
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followed by v. A random number δ ∈ [0, 1] is generated in advance. If a
randomly selected node vj from set P

∪
Q belongs to set P and δ is no larger

than a predefined probability p (0 ≤ p ≤ 1), an edge from i to vj is added;
if vj ∈ P and δ > p, an edge from vj to i is added. Moreover, if vj ∈ Q and
δ ≤ q (0 ≤ q ≤ p), an edge from i to vj is added. Otherwise, an edge from
vj to i is added. This asymmetry is common in real social networks, such as
the weibo network, where the newly added nodes are more likely to pay close
attention to the node with high proximity prestige and the ones followed by
it. Thus, in this model, the value of q is no larger than the value of p.

(3) If the neighbored nodes of the selected node v in PA step is no less than m−1,
the TF step is repeated for m− 1 times, and m directed edges are generated.
Moreover, if the number of nodes neighboring with node v is less than m− 1,
more PA and TF steps are required, until m edges are added into the network.

To illustrate the generation of the proposed network, a network with m0 = 3
nodes and 0 edges is initialized in advance. Suppose a = 1. Then, node n4 is
added at time t0 and m = 3 existed nodes are selected from the set {n1, n2, n3}
with probability { 1

3 ,
1
3 ,

1
3}. Three edges from node n4 to existed nodes are added

by repeating 3 times of PA steps as shown in Figure 2(a). The proximity prestige
values of the nodes are assigned with f = [ 13 ,

1
3 ,

1
3 , 0]. At time t1, node n5 and an

edge from n5 to an existed node with largest proximity prestige, e.g. n2, are added
to the network as illustrated in Figure 2(b). In Figure 2(c), n4 is selected as a
neighbor node of n2, and with probability q, an edge from n5 to n4 is added. As
the number of nodes neighboring with n2 is less than m − 1, another PA step is
required. In Figure 2(d), the mth node of largest proximity prestige in set {n1, n3}
is selected and an edge from n5 to n1 is added. The proximity prestige at this time
step is f = [ 14 ,

1
4 ,

1
4 ,

1
4 , 0]. In Figure 2(e), node n6 is added and an edge from n6

to n4 is added at the PA step. An edge from n6 to n3 with probability p and an
edge from n5 to n6 with probability 1 − q are added to the network at the triad
formation step.

3. Simulation and Analysis

In this section, we set m0 = 3, which means that there are 3 nodes in the initial
network without connections. During the generation of the network, once a node
is added, m = 3 edges are added simultaneously. The first edge is added from the
new node to priority selected node with large proximity prestige. Then another
two nodes are selected among the neighbors of the first selected node. Suppose p =
0.9, q = 0.5, which determine the direction of the edge connecting the newly added
node and the aforementioned selected nodes. Repeat the PA and TF steps described
in section 2, until the number of nodes reaches 500. The resulting network is shown
in Figure 3, and the triangular structure can be apparently observed which indicates
that the proximity prestige network has a large clustering coefficient. Moreover,
it also indicates that a large number of nodes in this network model have small
degrees, and a small number of nodes have high degrees. Thus, the proximity
prestige network possesses the scale-free property.

In Table 1, some properties of different networks are listed, including the number
N of nodes, average path length l, average in-degree d̄in, and clustering coefficient
C. Specifically, the networks are
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Figure 2. The generation of the proximity prestige network model.

Figure 3. Topology of a proximity prestige network with N = 500 nodes.
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(1) PPNet11: the proposed proximity prestige network with m0 = m = 3, a = 1
and p = 1.0, q = 1.0;

(2) PPNet95: the proposed proximity prestige network with m0 = m = 3, a = 1
and p = 0.9, q = 0.5;

(3) PPNet05: the proposed proximity prestige network with m0 = m = 3, a = 1
and p = 0.5, q = 0.5; and

(4) BA scale-free network: The network proposed in [3] with m0 = m = 3.

Table 1. Some characteristics of directed proximity prestige networks

Network N l d̄in C

PPNet11

100 1.95 2.91 0.312

300 2.34 2.97 0.298

500 3.44 2.98 0.288

1000 4.23 2.99 0.279

PPNet95

100 3.86 2.91 0.33

300 4.54 2.97 0.31

500 5.72 2.98 0.31

1000 7.11 2.99 0.33

PPNet05

100 4.25 2.91 0.33

300 4.87 2.97 0.318

500 5.18 2.98 0.32

1000 6.12 2.99 0.323

BA scale-free network

100 3.65 2.97 0.082

300 4.27 2.99 0.047

500 4.46 2.994 0.029

1000 4.89 2.997 0.015

Compared with the same scale BA scale-free network, the proximity prestige
network has a larger clustering coefficient, indicating that the proximity prestige
network has the small-world property. Further, compared with different scales of
the proximity prestige network, the average path length and the average in-degree
increase when the scale of network becomes larger.

We further remove the direction of edges in the networks generated previously,
and construct some undirected networks. Table 2 lists the properties of undirected
proximity prestige networks and the BA scale-free network. The same conclusion
can be drawn as Table 1. Moreover, with a given number of nodes, the proximity
prestige networks listed in Table 2 have the same average degree. This is because
the average degree d̄ = E/N , where E is the number of edges in the network, and
m edges are added at each time step.

Figure 4 shows the in-degree and out-degree distributions of the directed prox-
imity prestige networks with k = 1000, and the degree distributions of their cor-
responding undirected networks. In Figure 4(a), p = 1.0, q = 1.0, where it can be
observed that just m = 3 edges are emanating from any node, i.e., the out-degree
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Table 2. Some properties of undirected proximity prestige networks

Network N l d̄ C

PPNet11

100 2.80 5.82 0.623

300 3.23 5.94 0.596

500 3.35 5.964 0.576

1000 3.71 5.982 0.557

PPNet95

100 2.78 5.82 0.67

300 3.57 5.94 0.63

500 3.96 5.964 0.62

1000 4.28 5.982 0.67

PPNet05

100 2.86 5.82 0.663

300 3.59 5.94 0.637

500 3.81 5.964 0.639

1000 4.55 5.982 0.646

BA scale-free network

100 2.583 5.88 0.159

300 2.997 5.96 0.092

500 3.174 5.976 0.054

1000 3.533 5.988 0.030

dout equals m at any time t. With the values of p and q decrease, the out-degree
follows a power-law distribution as shown in Figure 4(b) and Figure 4(c). Moreover,
Figure 4 indicates that the in-degree distributions of the directed proximity pres-
tige networks and the degree distributions of their corresponding proximity prestige
networks follow the power-law distribution described by

P (d) = A · d−γ , (3.1)

where γ is the characteristic exponent and A is the normalizing coefficient to ensure∑N
d=1 P (d) = 1. Especially, the degree distributions of the undirected proximity

prestige networks conform to the degree distribution property of many real-world
networks, i.e. γ ∈ (2.0, 3.0).

3.1. The assortativity coefficients

In undirected networks, the assortativity coefficient describes the connective bias of
two nodes with different property values, such as degree, clustering coefficient. It
is measured by the Pearson correlation coefficient.

However, the direction property of the edges in directed networks would affect
its assortative property. In this section, we will investigate the assortative property
of the proposed proximity prestige networks by calculating r(out, in), r(in, out),
r(in, in), r(in, f) and r(f, in). Where r(in, f) is quantized as a bias measurement
that a large in-degree node connects a large proximity prestige node. Suppose α,
β ∈ {in, out, f} are one/two type of the properties; A = (aij) is the adjacency
matrix of a directed network, in which only if there exists an edge emanating from
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Figure 4. Degree distributions of the proximity prestige networks with N = 1000.

node i to node j, aij = 1; otherwise, aij = 0. αi and βj denote the property values
of node i and node j. Then, the assortativity coefficient of a proximity prestige
network can be described by equation (3.2).

r(α, β) =
cov(α, β)

σ2

=
(
∑

ij aij)
−1

∑
ij aij(αi − µα)(βj − µβ)√

(
∑

ij aij)
−1

∑
ij aij(αi − µα)2

√
(
∑

ij aij)
−1

∑
ij aij(βi − µβ)2

=

∑
ij aij(αi − µα)(βj − µβ)√∑

ij aij(αi − µα)2
∑

ij aij(βi − µβ)2
. (3.2)

Where, µα =
∑N

i=1 αi is the average of the property α. If r > 0, the network
is assortative according to properties α and β; otherwise, it is a disassortative
network due to properties α and β. Table 3 lists the assortativity coefficients of
(i) in-degree and out-degree r(in, out), (ii) out-degree and in-degree r(out, in), (iii)
in-degree and in-degree r(in, in), (iv) in-degree and proximity prestige r(in, f), (v)
proximity prestige and in-degree r(f, in), (vi) proximity prestige and proximity



A proximity prestige network model 185

prestige r(f, f). It indicates (i) large in-degree nodes are mostly connected to large
proximity prestige nodes; (ii) large proximity prestige nodes are also likely connected
to large proximity prestige nodes in the networks.

Table 3. The assortativity coefficients of proximity prestige networks

N p, q r(in, out) r(out, in) r(in, in) r(in, f) r(f, in) r(f, f)

300
0.9, 0.5 -0.0165 -0.0627 0.0235 0.2227 0.0115 0.3083

0.5, 0.5 -0.0314 -0.0766 -0.0157 0.1955 0.0097 0.2255

500
0.9, 0.5 -0.0271 -0.0224 0.0400 0.2322 0.0246 0.2806

0.5, 0.5 -0.0403 -0.0525 -0.0457 0.1832 -0.0981 0.1844

1000
0.9, 0.5 0.0690 -0.0081 -0.0469 0.2214 -0.0715 0.5270

0.5, 0.5 -0.0244 -0.0456 -0.0274 0.2153 -0.0435 0.2249

3.2. Spreading Feature Analysis

In this section, the information spreading features of proximity prestige networks
based on (i) SIR model and (ii) SIS model are analyzed and compared with that of
BA scale-free network. All the networks are constructed with 1000 nodes.

3.2.1. Spreading property based on SIR model

Suppose that a proximity prestige network with p = 0.5, q = 0.5 is constructed
in advance, and 10 of the largest proximity prestige nodes are initially infected.
The messages are travelled along the opposite directions of the edges, i.e., messages
are transmitted from high proximity prestige nodes to their neighbored nodes. We
denote the probability that an infectious node will infect a susceptible neighbor as β.
An infectious node becomes a recovered node with probability γ. Each simulation
has been repeated for 1000 times and the spreading effect is shown in Figure 5. As
usual, S(t), I(t), R(t) represent the proportions of suspected nodes, infected node
and recovered nodes at time t, and S(t) + I(t) +R(t) = 1.

Figure 5 indicates that the number of infected nodes increases rapidly at the
beginning, and decreases sharply after a threshold. Moreover, the number of recov-
ered nodes increases initially, and as the time step approaches 300, the proportion
of recovered nodes becomes independent of t.

Further, we set the initially infected nodes as 10 of the largest in-degree nodes,
and compare the proportion of infected nodes with that of 10 largest proximity pres-
tige nodes being initially infected. The result is shown in Figure 6. It indicates that
the spreading efficiency with 10 largest proximity prestige nodes initially infected
is slightly larger than that of initially infected nodes with largest in-degrees.

Figure 7 plots the proportion of infected nodes in PPNet05, PPNet95, PPNet11
and the BA scale-free network, in which the initially infected nodes are set to be
10 largest proximity prestige nodes. It reveals that the number of infected nodes
of PPNet11 and PPNet05 are larger than that of the BA scale-free network before
the value of I(t) approaching 0. Moreover, the number of infected nodes of the
BA scale-free network outperforms the PPNet95 initially, then PPNet95 achieves a
higher proportion of infected nodes after a certain time step.
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Figure 8. The proportion of recovered nodes
of the proximity prestige networks and the BA
scale-free network on SIR model.

The proportion of recovered nodes shown in Figure 8 also reveals that the PP-
Net05 and PPNet11 achieve much better spreading capability than the BA scale-free
network.

3.2.2. Spreading property based on SIS model

At each time step, suppose that every susceptible node v is infected along the link
in the network with rate β = 0.05 if it is directed by an infectious node; and an
infectious node returns to susceptible state with rate γ = 0.03. Assume that 10
largest proximity prestige nodes of each network are initially infected. We now
further discuss the effective transmission of proximity prestige networks based on
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the SIS model. Figure 9 plots the infected node number of (i) BA scale-free network,
(ii) PPNet95, (iii) PPNet05 and (iv) PPNet11. It indicates that for the same number
of nodes and links, the PPNet05 has a larger proportion of infected nodes than the
BA scale-free network. Comparing to the number of infected nodes of the PPNet95,
it can be seen that the BA scale-free network has a higher proportion of infected
nodes when the time steps are relatively small. As the time step reaches a critical
point, the PPNet95 outperforms the BA scale-free network and provides a much
more effective transmission. Moreover, the PPNet11 needs least time steps to visit
all reachable nodes.
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Figure 9. The transmission efficiency of the proximity prestige networks and the BA scale-free network
based on SIS model.

4. Conclusion

The topological structure of a complex network and the initially infected nodes are
two factors that affect the transmission capacity of epidemic or information over
complex networks. Proximity prestige is a structural metric which describes the
prestige or importance of a node in a network. In this paper, we construct a scale-
free network using preferential attachment based on the proximity prestige. More-
over, triad formation is utilized to ensure that the network model possesses a high
clustering coefficient. Simulation results have further shown that the PPNet05 and
PPNet11 accomplish higher transmission efficiency than the BA scale-free network
based on SIR model. Moreover, the number of reachable nodes in the proximity
prestige networks is superior to the same size BA scale-free network based on SIS
model.
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