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Abstract As far as medical diagnosis problem is concerned, predicting the
actual disease in complex situations has been a concerning matter for the
doctors/experts. The divergence measure for intuitionistic fuzzy sets is an
effective and potent tool in addressing the medical decision making problems.
We define a new divergence measure for intuitionistic fuzzy sets (IFS) and
its interesting properties are studied. The existing divergence measures under
intuitionistic fuzzy environment are reviewed and their counter-intuitive cases
has been explored. The parameter α is incorporated in the proposed divergence
measure and it is defined as parametric intuitionistic fuzzy divergence measure
(PIFDM). The different choices of the parameter α provide different decisions
about the disease. As we increase the value of α, the information about the
disease increases and move towards the optimal solution with the reduced in
the uncertainty. Finally, we compare our results with the already existing
results, which illustrate the role of the parameter α in obtaining the optimal
solution in the medical decision making application. The results demonstrate
that the parametric intuitionistic fuzzy divergence measure (PIFDM) is more
comprehensive and effective than the proposed intuitionistic fuzzy divergence
measure and the existing intuitionistic fuzzy divergence measures for decision
making in medical investigations.
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1. Introduction

Uncertainty removal in decision making has been one of the basic challenges in
various types of applications. It has been significantly increasing in medical diag-
nosis problems due to which diagnose the disease becomes more complicated. Due
to high level of uncertainty, it is very tough to predict the disease with which the
patient is suffering from. Hence, dealing efficiently with uncertainty is absolutely
essential for proper diagnosis of diseases. To cope with these problems, the theory
of intuitionistic fuzzy sets (IFS), introduced by Atanassov [1] is an expedient tool
over fuzzy sets, vague sets [4], interval-valued fuzzy sets [12] and many more. The
theory of IFS has been utilized by various authors in miscellaneous disciplines. It
makes possible to define the inexact medical information in terms of membership
degree, non-membership degree and hesitation degree.
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In the last few years, divergence measure for intuitionistic fuzzy sets have been
played an imperative role in reducing the uncertainty and help experts to take the
decision about the patient’s disease. This will in turn diminish uncertainty in cases
where limited information is available to the experts, as it helps to diagnose the
disease with maximum accuracy and less uncertainty. It has numerous applications
in lot of fields such as pattern recognition [2, 6, 13, 15], group decision making [16],
medical diagnosis [2,3,5,8–11,13,14,18], image processing [13] etc. Vlachos & Ser-
giadis [13] firstly proposed the divergence measure for IFS and shown its application
in pattern recognition, image processing and medical diagnosis. Thereafter, many
researchers Junjun et al. [7], Xia & Xu [16], Wei & Ye [15], Zhang & Jiang [18],
Hung & Yang [6] have defined the different divergence measures for IFS and the
findings have applied in variety of fields. However, Wei & Ye [15] pointed out the
downside of Vlachos & Sergiadis [13] measure and modified the measure of Vlachos
& Sergiadis [13].

In the present work, we will propose a new divergence measure under intuition-
istic fuzzy phenomenon and extend it to the parametric form by incorporating the
parameter α and defined it as parametric intuitionistic fuzzy divergence measure
(PIFDM). The findings of the proposed intuitionistic fuzzy divergence measure and
the parametric intuitionistic fuzzy divergence measure (PIFDM) are shown in the
medical decision making problem.

The paper is arranged as follows: Section 2 provides some basic definitions, which
are used in the analysis of the paper. Some already existing divergence measures for
IFS are given in section 3. Section 4 introduces a new intuitionistic fuzzy divergence
measure with its elegant properties and show by numerical examples that some
of the already existing divergence measures for IFS do not satisfy the axioms of
intuitionistic fuzzy divergence measures. Section 5 defines the parametric form of
proposed divergence measure, Vlachos & Sergiadis [13] measure and Wei & Ye [15]
measure. A numerical example is presented to demonstrate the applicability of the
proposed divergence measures for the problem of medical diagnosis. Conclusion of
the paper is given in Section 6.

2. Preliminaries

In this section, fundamental knowledge concerning about IFS and intuitionistic
fuzzy divergence measure are introduced so as to smooth the analysis of the paper.
For convenience, let X = {x1, x2, . . . , xn } be used in throughout this article.

2.1. Intuitionistic Fuzzy Sets

Definition 2.1. An intuitionistic fuzzy set A defined on the universe of discourse
X, introduced by Atanassov [1], given by the expression

A = {〈x, µA(x), νA(x)〉|x ∈ X}, (2.1)

where the functions µA (x) : X → [0, 1] and νA (x) : X → [0, 1] denote the member-
ship degree and the non-membership degree to A respectively. For every x ∈ X

0 ≤ µA(x) + νA(x) ≤ 1. (2.2)

Further, we denote by πA (x) = 1− µA(x)− νA (x) for all x ∈ X hesitation degree
to A which basically expresses lack of information of whether x belongs to A or
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not. It is obvious that 0 ≤ πA (x) ≤ 1 for every x ∈ X . In fact, when µA(x) =
1 − νA(x) for all x ∈ X, an intuitionistic fuzzy set is converted into a fuzzy set.
Let IFS (X ) denote the family of all intuitionistic fuzzy sets in the finite universe
X = {x1, x2, . . . , xn}and A,B ∈ IFS(X) given by A = {〈x, µA(xi), νA(xi)〉|xi ∈
X} and B = {〈x, µB(xi), νB(xi)〉|xi ∈ X} used throughout in this paper. Then
some set operations can be defined as follows:

• Complement of A

AC = {〈x, νA(xi), µA(xi)〉|xi ∈ X}.

• Intersection of A and B

A ∩B = {〈x,min {µA(xi), µB(xi)} ,max {νA(xi), νB(xi)}〉 |xi ∈ X } .

• Union of A and B

A ∪B = {〈x,max {µA(xi), µB(xi)} ,min {νA(xi), νB(xi)}〉 |xi ∈ X } .

• Inclusion Relation

A ⊆ B if and only if µA(xi) ≤ µB(xi) and νA(xi) ≥ νB(xi),∀xi ∈ X.

2.2. Intuistionistic Fuzzy Divergence Measures

Definition 2.2. Let A,B ∈ IFS(X) be two intuitionistic fuzzy sets in X. A map-
ping D : IFS(X) × IFS(X) → R is a divergence measure for IFS if it fulfils the
following axioms [13].
M1. D(A||B) ≥ 0.
M2. D (A||B) = 0 if and only if A = B.
M3. D (A||B) = D

(
AC ||BC

)
.

The divergence measure for IFS should satisfy the above mentioned axioms M1
– M3. Next, we listed some of the existing intuitionistic fuzzy divergence measures,
are as follows.

3. Review of intuitionistic fuzzy divergence mea-
sures

A number of divergence measures under intuitionistic fuzzy phenomenon have been
proposed by the several researchers and practitioners in order to measure the degree
of discrimination between the two IFS. The existing divergence measures between
IFS are listed next.

Vlachos & Sergiadis [13]

DV S(A||B) =

n∑
i=1

(
µA(xi) ln

(
2µA(xi)

µA(xi) + µB(xi)

)
+ νA(xi) ln

(
2νA(xi)

νA(xi) + νB(xi)

))
.

(3.1)
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Vlachos & Sergiadis [13] also defined the symmetric version of measure (3.1), given
by

Dsym
V S

(A||B) = DV S(A||B) +DV S(B||A)

=
∑n
i=1

µA(xi) ln
(

2µA(xi)
µA(xi)+µB(xi)

)
+ νA(xi) ln

(
2νA(xi)

νA(xi)+νB(xi)

)
+µB(xi) ln

(
2µB(xi)

µA(xi)+µB(xi)

)
+ νB(xi) ln

(
2νB(xi)

νA(xi)+νB(xi)

)
 .

(3.2)

Zhang & Jiang [18]

DZY (A||B)

=
∑n
i=1

(µA(xi)+1−νA(xi)
2

)
ln
(

2(µA(xi)+1−νA(xi))
(µA(xi)+1−νA(xi))+(µB(xi)+1−νB(xi))

)
+
(
νA(xi)+1−µA(xi)

2

)
ln
(

2(νA(xi)+1−µA(xi))
(νA(xi)+1−µA(xi))+(νB(xi)+1−µB(xi))

)
 .

(3.3)

Wei & Yei [15] & K. C. Hung [5]

DWY (A||B) =

n∑
i=1


µA(xi) ln

(
2µA(xi)

µA(xi)+µB(xi)

)
+νA(xi) ln

(
2νA(xi)

νA(xi)+νB(xi)

)
+πA(xi) ln

(
2πA(xi)

πA(xi)+πB(xi)

)
 . (3.4)

The symmetric discrimination of measure (3.4) is given by

Dsym
WY (A||B) = DWY (A||B) +DWY (B||A)

=
∑n
i=1


µA(xi) ln

(
2µA(xi)

µA(xi)+µB(xi)

)
+ νA(xi) ln

(
2νA(xi)

νA(xi)+νB(xi)

)
+πA(xi) ln

(
2πA(xi)

πA(xi)+πB(xi)

)
+ µB(xi) ln

(
2µB(xi)

µA(xi)+µB(xi

)
+νB(xi) ln

(
2νB(xi)

νA(xi)+νB(xi)

)
+ πB(xi) ln

(
2πB(xi)

πA(xi)+πB(xi)

)
 .

(3.5)

Jujun et al. [7]

DJ(A||B) =
∑n
i=1

(
πA(xi) ln

(
2πA(xi)

πA(xi)+πB(xi)

)
+ ∆A(xi) ln

(
2∆A(xi)

∆A(xi)+∆B(xi)

))
,

(3.6)

where ∆A(xi) = |µA(xi)−νA(xi)|, denotes that how close the membership and non
membership degrees are. The symmetric divergence measure of (3.6) are defined as
follows

Dsym
J (A||B) = DJ(A||B) +DJ(B||A). (3.7)

In the next section, we will propose a new divergence measure for intuitionistic
fuzzy sets (IFS) and satisfies a number of additional properties apart from the basic
axioms.
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4. New Intuitionistic Fuzzy divergence Measure

Let A,B,C ∈ IFS(X), then the intuitionistic fuzzy divergence measure of A against
B is defined as

D (A||B) = − log

(
1+ 1

n

∑n
i=1

(√
µA(xi)µB(xi)+

√
νA(xi)νB(xi)+

√
πA(xi)πB(xi)

)
2

)
,

(4.1)

which represents the amount of discrimination information of one intuitionistic fuzzy
set A from other intuitionistic fuzzy set B. Now, we demonstrate through some nu-
merical examples that the measures DV S (A||B), DZY (A||B) and DJ (A||B) given
by (3.1), (3.3) and (3.6), respectively do not satisfy the axioms, which an intuition-
istic fuzzy divergence measure should comply.

4.1. Counter-intuitive Cases

Example 4.1. Let A,B ∈ IFS(X), given by

A = {〈x1, 0.44, 0.385〉, 〈x2, 0.43, 0.39〉, 〈x3, 0.42, 0.38〉} ,

B = {〈x1, 0.34, 0.48〉, 〈x2, 0.37, 0.46〉, 〈x3, 0.38, 0.45〉} .

Then, we have the following results for the measures given by (3.1), (3.6) and (4.1),
respectively for the above two IFS,

DV S (A||B) = −0.0, DJ (A||B) = −0.0,

and
D (A||B) = 0.0027.

This is the violation of axiom M1 by the measures (3.1) and (3.6).

Example 4.2. Let A,B ∈ IFS(X), given by

A = {〈x1, 0.0, 0.5〉, 〈x2, 0.5, 0.0〉, 〈x3, 0.0, 0.0〉} ,

B = {〈x1, 0.5, 0.5〉, 〈x2, 0.5, 0.5〉, 〈x3, 0.5, 0.0〉} .

Considering (3.1) and (4.1), we get

DV S (A||B) = 0,

and
D (A||B) = 0.4033.

So, the measure given by (3.1) violates the axiom M2.

Example 4.3. Let A,B ∈ IFS(X), given by

A = {〈x1, 0.0, 0.0〉, 〈x2, 0.5, 0.5〉} ,

B = {〈x1, 0.5, 0.5〉, 〈x2, 0.0, 0.0〉} .
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Considering (3.3) and (4.1), we get

DZY (A||B) = 0,

and

D (A||B) = 1.

Example 4.4. Let A,B ∈ IFS(X), given by

A = {〈x1, 0.0, 0.5〉} ,

B = {〈x1, 0.5, 0.0〉} .

Using (3.6) and (4.1), we get

DJ (A||B) = 0,

and

D (A||B) = 0.4150.

Example (4.3) and (4.4) are again the case of violation of axiom M2.
So, we can easily observe from the above examples that the measures introduced

by Vlachos & Serigiadis [13], Zhang & Jiang [18] and Junjun et al. [7] failed to
carry out the axioms M1 and M2, given in definition (2.2) , whereas the proposed
measure given by (4.1) satisfies all the axioms of divergence measure. Therefore,
the proposed divergence measure is a valid divergence measure for IFS and does
not have any counter-intuitive cases.

4.2. Properties of the Proposed Intuitionistic Fuzzy Diver-
gence Measure

Theorem 4.1. Let A,B,C ∈ IFS(X), then the proposed measure D (A||B) given
by (4.1) satisfies the following properties are given as follows:
P1. D (A||B) = D (B||A) and 0 ≤ D (A||B) ≤ 1.
P2. D (A||B) = 0 if and only if A = B.
P3. D (A ∩ C||B ∩ C) ≤ D (A||B) for every C ∈ IFS(X).
P4. D (A ∪ C||B ∪ C) ≤ D (A||B) for every C ∈ IFS(X).
P5. D (A||B) = D

(
AC ||BC

)
.

P6. D
(
A||BC

)
= D

(
AC ||B

)
.

P7. D
(
A||AC

)
= 1 if and only if A is a crisp set.

P8. D
(
A||AC

)
= 0 if and only if µA(xi) = νA(xi) for all xi ∈ X.

P9. D (A||A ∪B) = D (A ∩B||B) ≤ D (A||B) for A ⊆ B and B ⊆ A.
P10. D (A ∩B||A ∪B) = D (A||B).
P11. D (A||B) ≤ D (A||C) for A ⊆ B ⊆ C.
P12. D (B||C) ≤ D (A||C) for A ⊆ B ⊆ C.

Proof. P1. The symmetry of measure (4.1) with respect to their argument is
obvious. So, D (A||B) = D (B||A) . Further by virtue of arithmetic geometric mean
inequality, we have √

µA(xi)µB(xi) ≤
µA(xi) + µB(xi)

2
,
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νA(xi)νB(xi) ≤

νA(xi) + νB(xi)

2
,

√
πA(xi)πB(xi) ≤

πA(xi) + πB(xi)

2
.

On adding the above three equations and take summations on both sides, we get

n∑
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
≤

n∑
i=1

(µA(xi) + µB(xi)

2
+
νA(xi) + νB(xi)

2
+
πA(xi) + πB(xi)

2

)
⇒ 0 ≤ 1

n

n∑
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
≤ 1

⇒ 1

2
≤
(1 + 1

n

∑n
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2

)
≤ 1

⇒ 0 ≤− log
(1 + 1

n

∑n
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2

)
≤1

⇒ 0 ≤D (A||B) ≤ 1.

P2. Let A = B, then it is obvious that D (A||B) = 0.
Now, consider

D (A||B) = 0

⇒− log
(1 + 1

n

∑n
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2

)
= 0

⇒− log
(
1 +

1

n

n∑
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

))
= − log 2

⇒
√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi) = 1

⇒
√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

=
µA(xi) + µB(xi)

2
+
νA(xi) + νB(xi)

2
+
πA(xi) + πB(xi)

2

⇒

 µA(xi)+µB(xi)
2 −

√
µA(xi)µB(xi) + νA(xi)+νB(xi)

2

−
√
νA(xi)νB(xi) + πA(xi)+πB(xi)

2 −
√
πA(xi)πB(xi)

 = 0

⇒
(√

µA(xi)−
√
µB(xi)

)2
2

+

(√
νA(xi)−

√
νB(xi)

)2
2

+

(√
πA(xi)−

√
πB(xi)

)2
2

= 0

⇒µA(xi) = µB(xi), νA(xi) = νB(xi), πA(xi) = πB(xi).

Therefore, two sets coincide, i.e., A = B.
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P3. We have(√
min(µA(xi), µC(xi))−

√
min(µB(xi), µC(xi))

)2

≤
(√

µA(xi)−
√
µB(xi)

)2

⇒

min (µA(xi), µC(xi)) + min (µB(xi), µC(xi))

−2
(√

min (µA(xi), µC(xi)) min (µB(xi), µC(xi))
) ≤ (µA(xi) + µB(xi)

−2
√
µA(xi)µB(xi)

)
.

(4.2)

Again, we have(√
max (νA(xi), νC(xi))−

√
max (νB(xi), νC(xi))

)2

≤
(√

νA(xi)−
√
νB(xi)

)2

⇒

max (νA(xi), νC(xi)) + max (νB(xi), νC(xi))

−2
(√

max (νA(xi), νC(xi)) max (νB(xi), νC(xi))
) ≤

 νA(xi) + νB(xi)

−2
√
νA(xi)νB(xi)

 .

(4.3)

We can also write√1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi))

−
√

1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi))

2

≤

√1− µA(xi)− νA(xi)

−
√

1− µB(xi)− νB(xi)

2

⇒


(1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))

+ (1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))

−2

√(1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))

×
√

(1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))




≤

1− µA(xi)− νA(xi) + 1− µB(xi)− νB(xi)

−2
(√

(1− µA(xi)− νA(xi)) . (1− µB(xi)− νB(xi))
) . (4.4)

Adding (4.2), (4.3) and (4.4) yields

min (µA(xi), µC(xi)) + min (µB(xi), µC(xi))

−2
√

min (µA(xi), µC(xi)) .min (µB(xi), µC(xi))

+ max (νA(xi), νC(xi)) + max (νB(xi), νC(xi))

−2
√

max (νA(xi), νC(xi)) .max (νB(xi), νC(xi))

+ (1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))

+ (1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))

−2

√(1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))

×
√

(1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))
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≤


µA(xi) + µB(xi)− 2

√
µA(xi)µB(xi) + (1− µB(xi)− νB(xi))

−2
(√

νA(xi)νB(xi)
)

+ (1− µA(xi)− νA(xi)) + νA(xi) + νB(xi)

−2
√

(1− µA(xi)− νA(xi)) . (1− µB(xi)− νB(xi))



⇒2


1−

√
min (µA(xi), µC(xi)) .min (µB(xi), µC(xi))

−
√

max (νA(xi), νC(xi)) .max (νB(xi), νC(xi))

−

√(1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))√
(1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))




≤ 2

 1−
√
µA(xi)µB(xi)−

√
νA(xi)νB(xi)

−
√

(1− µA(xi)− νA(xi)) . (1− µB(xi)− νB(xi))



⇒− log


1+ 1

n

∑n
i=1



√
min (µA(xi), µC(xi)) min (µB(xi), µC(xi))

+
√

max (νA(xi), νC(xi)) max (νB(xi), νC(xi))

+

√(1−min (µA(xi), µC(xi))−max (νA(xi), νC(xi)))√
(1−min (µB(xi), µC(xi))−max (νB(xi), νC(xi)))




2



≤− log

 1+ 1
n

∑n
i=1


√
µA(xi)µB(xi) +

√
νA(xi)νB(xi)

+
√

(1− µA(xi)− νA(xi)) (1− µB(xi)− νB(xi))


2


⇒D (A ∩ C||B ∩ C) ≤ D (A||B) for every C ∈ IFS(X).

P4. The proof is on similar lines as in P3.
P5. Consider

D(A||B)

=− log

1 + 1
n

∑n
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2


=− log

1 + 1
n

∑n
i=1

(√
νA(xi)νB(xi) +

√
µA(xi)µB(xi) +

√
πA(xi)πB(xi)

)
2


=D

(
AC ||BC

)
.

P6. We have

D
(
A||BC

)
=− log

1 + 1
n

∑n
i=1

(√
µA(xi)νB(xi) +

√
νA(xi)µB(xi) +

√
πA(xi)πB(xi)

)
2


=− log

1 + 1
n

∑n
i=1

(√
νA(xi)µB(xi) +

√
µA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2
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=D
(
AC ||B

)
.

P7. Let A be a crisp set, i.e., µA(xi) = 0, νA(xi) = 1, then it is obvious that
D
(
A||AC

)
= 1.

Now, consider

D
(
A||AC

)
= 1

⇒− log

1 + 1
n

∑n
i=1

(√
µA(xi)νA(xi) +

√
νA(xi)µA(xi) +

√
πA(xi)πA(xi)

)
2


= 1

⇒ log

 2

1 + 1
n

∑n
i=1

(
2
√
µA(xi)νA(xi) + πA(xi)

)
 = log 2

⇒µA(xi) + νA(xi)− 2
√
µA(xi)νA(xi) = 1

⇒
(√

µA(xi)−
√
νA(xi)

)2

= 1

⇒µA(xi) = 0, νA(xi) = 1 or µA(xi) = 1, νA(xi) = 0, i.e., A is a crisp set.

Therefore, D
(
A||AC

)
= 1 if and only if A is a crisp set.

P8. LetµA(xi) = νA(xi) in (4.1) for all xi ∈ X, then it is obvious

D
(
A||AC

)
= − log

(
1+ 1

n

∑n
i=1

(√
µA(xi)νA(xi)+

√
νA(xi)µA(xi)+

√
πA(xi)πA(xi)

)
2

)
= 0.

Now, if we consider

D
(
A||AC

)
= 0

⇒− log

1 + 1
n

∑n
i=1

(√
µA(xi)νA(xi) +

√
νA(xi)µA(xi) +

√
πA(xi)πA(xi)

)
2


= 0

⇒− log

(
1 +

1

n

n∑
i=1

(√
µA(xi)νA(xi) +

√
νA(xi)µA(xi) +

√
πA(xi)πA(xi)

))
= − log 2

⇒2
√
µA(xi)νA(xi) + πA(xi) = µA(xi) + νA(xi) + πA(xi)

⇒
(√

µA(xi)−
√
νA(xi)

)2

= 0

⇒µA(xi) = νA(xi) for all xi ∈ X.

Therefore, D
(
A||AC

)
= 0 if and only if µA(xi) = νA(xi) for all xi ∈ X.
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P9. From (4.1), we have

D
(
A||A

⋃
B
)

=− log

 1+ 1
n

∑n
i=1


√
µA(xi) max

(
µA(xi), µB(xi)

)
+

√
νA(xi) min

(
νA(xi), νB(xi)

)
+
√

(1− µA(xi)− νA(xi)) (1−max (µA(xi), µB(xi))−min (νA(xi), νB(xi)))


2

 ,

(4.5)

D
(
A
⋂
B||B

)
=− log

(
1+ 1

n

∑n
i=1


√

min (µA(xi), µB(xi))µB(xi) +
√

max (νA(xi), νB(xi)) νB(xi)

+
√

(1−min (µA(xi), µB(xi))−max (νA(xi), νB(xi))) (1− µB(xi)− νB(xi))


2

)
.

(4.6)

For A ⊆ B, (4.5) and (4.6)give

D (A||A ∪B) = D (A ∩B||B) = D (A||B) . (4.7)

Again, for B ⊆ A, (4.5) and (4.6) give

D (A||A ∪B) = D (A ∩B||B) = 0 ≤ D (A||B) . (4.8)

The proof follows from (4.7) and (4.8).
P10. We have

D (A
⋂
B||A

⋃
B)

= − log

(
1+ 1

n

∑n
i=1

(√µA⋂B(xi)µA⋃B(xi) +
√
νA⋂B(xi)νA⋃B(xi)

+
√(

1− µA⋂B(xi)− νA⋂B(xi)
)(

1− µA⋃B(xi)− νA⋃B(xi)
) )

2

)

= − log


1+ 1

n

∑n
i=1



√
min

(
µA(xi), µB(xi)

)
.max

(
µA(xi), µB(xi)

)
+

√
max

(
νA(xi), νB(xi)

)
.min

(
νA(xi), νB(xi)

)
+

√√√√√
(

1−min
(
µA(xi), µB(xi)

)
−max

(
νA(xi), νB(xi)

))
.
(

1−max
(
µA(xi), µB(xi)

)
−min

(
νA(xi), νB(xi)

))


2


= − log

( 1+ 1
n

∑n
i=1

[√
µA(xi)µB(xi)+

√
νA(xi)νB(xi)+

√
πA(xi)πB(xi)

]
2

)
= D(A||B).

P11. For A ⊆ B ⊆ C, we have(√
µA(xi)−

√
µB(xi)

)2

≤
(√

µA(xi)−
√
µC(xi)

)2

⇒µA(xi) + µB(xi)− 2
√
µA(xi)µB(xi) ≤ µA(xi) + µC(xi)− 2

√
µA(xi)µC(xi),

(4.9)(√
νA(xi)−

√
νB(xi)

)2

≤
(√

νA(xi)−
√
νC(xi)

)2

⇒νA(xi) + νB(xi)− 2
√
νA(xi)νB(xi) ≤ νA(xi) + νC(xi)− 2

√
νA(xi)νC(xi),

(4.10)
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πA(xi)−

√
πB(xi)

)2

≤
(√

πA(xi)−
√
πC(xi)

)2

⇒πA(xi) + πB(xi)− 2
√
πA(xi)πB(xi) ≤ πA(xi) + πC(xi)− 2

√
πA(xi)πC(xi).

(4.11)

On adding (4.9), (4.10) and (4.11), we have

2
(

1−
√
µA(xi)µB(xi)−

√
νA(xi)νB(xi)−

√
πA(xi)πB(xi)

)
≤ 2

(
1−

√
µA(xi)µC(xi)−

√
νA(xi)νC(xi)−

√
πA(xi)πC(xi)

)
⇒
√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

≥
√
µA(xi)µC(xi) +

√
νA(xi)νC(xi) +

√
πA(xi)πC(xi)

⇒− log

1 + 1
n

∑n
i=1

(√
µA(xi)µB(xi) +

√
νA(xi)νB(xi) +

√
πA(xi)πB(xi)

)
2


≤ − log

1 + 1
n

∑n
i=1

(√
µA(xi)µC(xi) +

√
νA(xi)νC(xi) +

√
πA(xi)πC(xi)

)
2


⇒D (A||B) ≤ D (A||C) .

P12. The proof is on similar lines as in P11.
This completes the proof.

5. Applications in Medical Diagnosis

Most decisions in medical science have substantial uncertainties which deal with
imprecision and fuzziness. There are a lot of diseases exist in medical science which
share some common symptoms. So, it is very difficult for experts/physicians, which
patient is actually suffering from which particular disease. The notion of divergence
measure under intuitionistic fuzzy setting plays a decisive role in tackling these
problems. K. C. Hung [5], De et al. [3], Szmidt& Kacprzyk [9–11] and Vlachos &
Sergiadis [13] utilized the concept of IFS for reducing the uncertainty in medical
diagnosis problems. We have used the approach of intuitionistic fuzzy divergence
measure to deal with the problem of medical diagnosis.

We have considered the medical diagnosis problem as discussed in [2, 3, 5, 8–
11, 13, 14]. The data consists of four patients P = {Ane, Ben, Jac, Tom}, five
diagnosis D = {viral fever, malaria, typhoid, stomach problem, chest pain} and
five symptoms S = {temperature, headache, stomach pain, chest pain}. Table 1
represents the characteristic symptoms for the diagnoses concerned in which row in-
dicates symptoms while column indicates diseases. Table 2 indicates the symptoms
for each patient in which row indicate patients while column corresponds to various
symptoms. Experts/physicians express their views about the disease of the patients
with respect to symptoms in terms of membership degree, non-membership degree
and hesitation degree in Table 1 and Table 2. In order to accomplish a proper di-
agnosis for each patient, we evaluate the proposed measure given by (4.1) between
a diagnosis, symptoms and all patients. Finally, we assign to the ith patient the
diagnosis whose symptoms have the lowest amount of intuitionistic fuzzy divergence
measure from patient’s symptoms.
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For some cases, experts give information about certain aspects of the disease
and remain quiet for those unknown characteristics. It might not be feasible to
make a decision for the experts/physicians on one inspection about the diseases
of the patients. So, there is a need of effective approach, which will give certain
information about the patient’s condition and variation of symptoms and suggest
diagnose accordingly. This can be done by reducing the hesitation margin, which
result in an increment in both membership and non membership functions As a
result, illustration of medical data by IFS, given by the triplet (µ, ν, π) will also un-
dergo changes. However, we intend to reflect this change in the divergence measure
which we are using for obtaining a proper diagnose and not in the medical data. We
now replace the triplet (µ, ν, π) by (µ+ απ, ν + απ, π − 2απ) in the measure (4.1),
thereby obtaining a modified parametric symmetric divergence measure given by

Dα (A||B)

=− log

 1+ 1
n

∑n
i=1


√

(µA(xi) + απA(xi)) (µB(xi) + απB(xi))

+
√

(νA(xi) + απA(xi)) (νB(xi) + απB(xi))

+
√

(πA(xi)− 2απA(xi)) (πB(xi)− 2απB(xi))


2

 .
(5.1)

Similarly, the parametric intuitionistic fuzzy divergence measure of (3.5) can be
written as

D
WY (α)

(A||B)

=
∑n
i=1




(µA(xi) + απA(xi)) ln

(
2×(µA(xi)+απA(xi))

(µA(xi)+απA(xi))+(µB(xi)+απB(xi))

)
+ (νA(xi) + απA(xi)) ln

(
2×(νA(xi)+απA(xi))

(νA(xi)+απA(xi))+(νB(xi)+απB(xi))

)
+ (πA(xi)− 2απA(xi)) ln

(
2×(πA(xi)−2απA(xi))

(πA(xi)−2απA(xi))+(πB(xi)−2απB(xi))

)


+


(µB(xi) + απB(xi)) ln

(
2×(µB(xi)+απB(xi))

(µA(xi)+απA(xi))+(µB(xi)+απB(xi))

)
+ (νB(xi) + απB(xi)) ln

(
2×(νB(xi)+απB(xi))

(νA(xi)+απA(xi))+(νB(xi)+απB(xi))

)
+ (πB(xi)− 2απB(xi)) ln

(
2×(πB(xi)−2απB(xi))

(πA(xi)−2απA(xi))+(πB(xi)−2απB(xi))

)



.

(5.2)

As shown in section 4, Vlachos & Sergiadis measure [13], DV S(A||B) assumes neg-
ative values and replacing the triplet (µ, ν, π) by (µ+απ, ν+απ, π−2απ) will only
worsen the situation. Replace (µ, ν, π) by (µ + απ, ν + (1− α)π, 0) in (3.2), the
resulting parametric divergence measure for IFS given by

DV S(α)(A||B)

=

n∑
i=1


(µA(xi) + απA(xi)) ln

(
2×(µA(xi)+απA(xi))

(µA(xi)+απA(xi))+(µB(xi)+απB(xi))

)
+ (νA(xi) + (1− α)πA(xi)) ln

(
2×(νA(xi)+(1−α)πA(xi))

(νA(xi)+(1−α)πA(xi))+(νB(xi)+(1−α)πB(xi))

)
+ (µB(xi) + απB(xi)) ln

(
2×(µB(xi)+απB(xi))

(µA(xi)+απA(xi))+(µB(xi)+απB(xi))

)
+ (νB(xi) + (1− α)πB(xi)) ln

(
2×(νB(xi)+(1−α)πB(xi))

(νA(xi)+(1−α)πA(xi))+(νB(xi)+(1−α)πB(xi))

)

,
(5.3)

will always be positive because the pair (µ+απ, ν+(1− α)π, 0) forms a probability
distribution and the measure (5.3) will satisfy the Shannon inequality. The same
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approach could be applied for other measures also; however we restrict ourselves
to the three parametric divergence measures given by (5.1), (5.2) and (5.3) and
utilized these measures for obtaining a proper diagnose for the data given in Tables
1 and 2.

The obtained result by the proposed measure (4.1) is presented in Table 3. By
analyzing the variation of the parameter α, we evaluate all the feasible medical
decision making results for the parametric divergence measures given by (5.1), (5.2)
and (5.3), presented in Table 4-15. The symbol ‘*

′
indicates the disease of the

patient in Tables 3-15. From the tables, it can be seen that for smaller values of
α, the differences between the lowest scores is very small, which results in so much
uncertainty in prediction of disease and need an advanced diagnosis. However, from
the results it is examined that with increase in value of α the difference between
lowest scores also increases, which result in reduction in uncertainty. As we increase
the value of α, we move towards the optimal solution and after some values of α,
we get the same results.

From the evaluated results, it is very much clear that Ben and Tom suffer from
stomach problem and viral fever, respectively. This diagnose does not change even
after variation in parameter α. Therefore, we can say that stomach problem and
viral fever are the correct diagnose for Ben and Tom. Ane suffers from Viral Fever
in eleven out of thirteen approaches, whereas Jac suffers from typhoid in three out
of the thirteen methods and this diagnose does not change with change in parameter
α. So, we can say that Ane and Jac have more chances to suffer from viral fever and
typhoid, respectively, i.e., viral fever is the correct diagnose for Ane and typhoid is
the correct diagnose for Jac. Finally, comparisons of the evaluated results with the
existing results are shown in Table 16. The optimal decision is provided in Table 17.
We reach at the discussion from the optimal results that Ane, Ben, Jac and Tom
suffer from viral fever, stomach problem, typhoid and viral fever, respectively. The
results show that the proposed parametric intuitionistic fuzzy divergence measure
(PIFDM) is more efficient and comprehensive than the proposed divergence measure
and the existing intuitionistic fuzzy divergence measures.

Table 1. Symptoms characteristics for the diagnosis
Viral fever Malaria Typhoid Stomach Chest

Problem Problem
Temperature (0.4, 0.0, 0.6) (0.7, 0.0, 0.3) (0.3, 0.3, 0.4) (0.1, 0.7, 0.2) (0.1, 0.8, 0.1)
Headache (0.3, 0.5,0.2) (0.2, 0.6,0.2) (0.6, 0.1,0.3) (0.2, 0.4,0.4) (0.0, 0.8,0.2)
Stomach pain (0.1, 0.7,0.2) (0.0, 0.9,0.1) (0.2, 0.7,0.1) (0.8, 0.0,0.2) (0.2, 0.8,0.0)
Cough (0.4, 0.3,0.3) (0.7, 0.0,0.3) (0.2, 0.6, 0.2) (0.2, 0.7, 0.1) (0.2, 0.8,0.0)
Chest pain (0.1, 0.7,0.2) (0.1, 0.8,0.1) (0.1, 0.9, 0.0) (0.2, 0.7,0.1) (0.8, 0.1,0.1)

Table 2. Symptoms characteristics for the patients
Temperature Headache Stomach pain Cough Chest

pain Pain
Ane (0.8, 0.1, 0.1) (0.6, 0.1, 0.3) (0.2, 0.8, 0.0) (0.6, 0.1, 0.3) (0.1, 0.6, 0.3)
Ben (0.0, 0.8, 0.2) (0.4, 0.4, 0.2) (0.6, 0.1, 0.3) (0.1, 0.7, 0.2) (0.1, 0.8, 0.1)
Jac (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.0, 0.6, 0.4) (0.2, 0.7, 0.1) (0.0, 0.5, 0.5)
Tom (0.6, 0.1, 0.3) (0.5, 0.4, 0.1) (0.3, 0.4, 0.3) (0.7, 0.2, 0.1) (0.3, 0.4, 0.3)
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Table 3. Diagnosed results for the proposed divergence measure D (A||B) given by (10)
Viral Fever Malaria Typhoid Stomach Problem Chest Problem

Ane 0.06653∗ 0.07089 0.07665 0.19619 0.23044
Ben 0.15401 0.28623 0.08470 0.02556∗ 0.16945
Jac 0.08641∗ 0.14462 0.09889 0.21979 0.29012
Tom 0.03919∗ 0.08098 0.08202 0.12011 0.17527

Table 4. Diagnosed results for the proposed PIFDM given by (5.1) for α = 1/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.04865∗ 0.04868 0.06553 0.16462 0.19835
Ben 0.10968 0.20945 0.06852 0.01539∗ 0.13894
Jac 0.05796∗ 0.10453 0.06760 0.15939 0.21635
Tom 0.02885∗ 0.05716 0.07191 0.10052 0.14825

Table 5. Diagnosed results by the proposed PIFDM given by (5.1) for α = 2/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.03833∗ 0.03968 0.05550 0.14711 0.17917
Ben 0.09401 0.18315 0.05985 0.01214∗ 0.12188
Jac 0.04724∗ 0.08918 0.05131 0.13694 0.18566
Tom 0.02456∗ 0.04892 0.06281 0.09004 0.13183

Table 6. Diagnosed results by the proposed PIFDM given by (5.1) for α = 3/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.02971∗ 0.03281 0.04628 0.13289 0.16329
Ben 0.08303 0.16500 0.05283 0.00985∗ 0.10752
Jac 0.03919 0.07781 0.03786∗ 0.12078 0.16221
Tom 0.02118∗ 0.04293 0.05447 0.08163 0.11779

Table 7. Diagnosed results by the proposed PIFDM given by (5.1) for α = 4/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.02214∗ 0.02705 0.03772 0.12066 0.14946
Ben 0.07448 0.15101 0.04679 0.00804∗ 0.09476
Jac 0.03250 0.06849 0.02604∗ 0.10790 0.14255
Tom 0.01830∗ 0.03805 0.04675 0.07450 0.10524

Table 8. Diagnosed results by the proposed PIFDM given by (5.1) for α = 5/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.01532∗ 0.02201 0.02968 0.10985 0.13713
Ben 0.06747 0.13962 0.04145 0.00653∗ 0.08311
Jac 0.02671 0.06051 0.01535∗ 0.09713 0.12537
Tom 0.01575∗ 0.03386 0.03954 0.06827 0.09375

Table 9. Diagnosed results for the measure D
WY (α)

(A||B) given by(5.2) for α = 1/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.45976 0.43628∗ 0.55136 1.37680 1.64236
Ben 0.92426 1.54470 0.53124 0.10401∗ 0.95177
Jac 0.47121 0.74735 0.38076∗ 1.27401 1.48427
Tom 0.23591∗ 0.39509 0.51158 0.85478 1.04488

Table 10. Diagnosed results for the measure D
WY (α)

(A||B) given by (5.2) for α = 2/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.36477 0.36396∗ 0.47743 1.26552 1.51648
Ben 0.85967 1.50240 0.55741 0.11792∗ 1.00938
Jac 0.46159 0.78966 0.40735∗ 1.20364 1.51190
Tom 0.23870∗ 0.43053 0.54248 0.81759 0.98180



Study on divergence measures for intuitionistic fuzzy sets 787

Table 11. Diagnosed results for the measure D
WY (α)

(A||B) given by (5.2) for α = 3/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.28521∗ 0.30538 0.41010 1.16782 1.40681
Ben 0.77465 1.39078 0.49864 0.09603∗ 0.91623
Jac 0.38483 0.70365 0.30948∗ 1.07886 1.35829
Tom 0.20574∗ 0.38079 0.48186 0.74788 0.92980

Table 12. Diagnosed results for the measure D
WY (α)

(A||B) given by (5.2) for α = 4/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.21540∗ 0.25503 0.34806 1.08008 1.30927
Ben 0.70412 1.29702 0.44797 0.07843∗ 0.83334
Jac 0.32093 0.63023 0.22601∗ 0.97597 1.22859
Tom 0.17737∗ 0.33827 0.42602 0.68645 0.88613

Table 13. Diagnosed results for the measure D
WY (α)

(A||B) given by (5.2) for α = 5/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.15264∗ 0.21040 0.29035 1.00015 1.22136
Ben 0.64385 1.21611 0.40325 0.06364∗ 0.75809
Jac 0.26535 0.56545 0.15219∗ 0.88796 1.11529
Tom 0.15222∗ 0.30080 0.37424 0.63156 0.84919

Table 14. Diagnosed results for the measure D
WY (α)

(A||B) given by (23) for α = 1/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.20815∗ 0.21297 0.30010 0.92113 1.22340
Ben 0.55628 1.18120 0.33966 0.11625∗ 0.75246
Jac 0.35884 0.49761 0.26578∗ 1.21481 1.46664
Tom 0.19583∗ 0.26214 0.31911 0.64068 0.83245

Table 15. Diagnosed results for the measure D
WY (α)

(A||B) given by (23) for α = 2/10

Viral Fever Malaria Typhoid Stomach Problem Chest Problem
Ane 0.18675∗ 0.20587 0.29154 0.93153 1.20827
Ben 0.56465 1.17054 0.34533 0.09624∗ 0.73846
Jac 0.31707 0.50075 0.21025∗ 1.09441 1.33324
Tom 0.18107∗ 0.26639 0.32796 0.63063 0.82592

Table 16. Comparison of Results
De et. Szmidt Szmidt C. M Own C. M Own Boran Vlachos
al [3] & & [8] for [8] for [5] &

Kacprzyk Kacprzyk p = 0 p = 1 Sergiadis
[9] [10] [13]

Ane Malaria Malaria
Viral Viral Viral Viral Viral
Fever Fever Fever Fever Fever

Ben
Stomach Stomach Stomach Stomach Stomach Stomach Stomach
Problem Problem Problem Problem Problem Problem Problem

Jac Malaria Typhoid Typhoid Typhoid
Stomach

Typhoid Typhoid
Problem

Tom Malaria
Viral

Malaria
Viral Viral Viral Viral

Fever Fever Fever Fever Fever

Wei Proposed Proposed Proposed Parametric Parametric Parametric
& measure PIFDM PIFDM measure measure measure

Yei [15] D (A||B) given by given by D
WY (α)

(A||B) D
WY (α)

(A||B) D
WY (α)

(A||B)

given by (5.1) for (5.1) for given by given by given by
(10) α = 1/10, α = 3/10, (5.2) for (5.2) for (5.3) for

2/10, 4/10, 5/10 α = 1/10, α = 3/10, α = 1/10,
2/10 4/10, 5/10 2/10

Ane Malaria Viral Fever Viral Fever Viral Fever Malaria Viral Fever Viral Fever

Ben
Stomach Stomach Stomach Stomach Stomach Stomach Stomach
Problem Problem Problem Problem Problem Problem Problem

Jac Typhoid Viral Fever Viral Fever Typhoid Typhoid Typhoid Typhoid

Tom Viral Fever Viral Fever Viral Fever Viral Fever Viral Fever Viral Fever Viral Fever
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Table 17. Optimal Decision for medical diagnosis problem
Patients

Ane Ben Jac Tom
Optimal Decision Viral Fever Stomach Problem Typhoid Viral Fever

6. Conclusion

In the present work, we have emphasized on the problem of decision making in
medical investigations and introduced a method in coping with this problem. We
have defined a new divergence measure for (IFS) and proved some elegant prop-
erties apart from the axioms, which show the strength of the measure. We have
scrutinized some existing measures of intuitionistic fuzzy divergence proposed by
several researchers and demonstrated their counter-intuitive cases. We have incor-
porated the parameter α in the IFS and extend the proposed divergence measure
to parametric intuitionistic fuzzy divergence measure (PIFDM). Taking the benefit
of the parameter α, defined the parametric form of the Vlachos & Sergiadis mea-
sure [13] and Wei & Yei measure [14]. Finally, a comparison has done, which show
the proposed PIFDM is more flexible, utilitarian and comprehensive than the pro-
posed divergence measure and the existing intuitionistic fuzzy divergence measures.
In future, we will extend our work to inter-valued intuitionistic fuzzy divergence
measure and find out its other real life applications.
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