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Abstract In this paper, a general non-autonomous n-species Lotka-Volterra
model with delays and stochastic perturbation is investigated. For this model,
sufficient conditions for extinction, non-persistence in the mean, weak per-
sistence and stochastic permanence are established. The influences of the
stochastic noises to the properties of the stochastic model are discussed. The
property permanence for the model is preserved with the sufficiently smal-
l noise and sufficiently large noise may cause extinction of the model. The
critical value between weak persistence and extinction is obtained. Finally,
numerical simulations are given to support the theoretical analysis results.
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1. Introduction

Population ecology is a major sub-field of ecology that deals with the dynamics of
species populations and the way these populations interact with the environment.
It is concerned with the study of groups of organisms that live together in time and
space and compete for the limited resources or in some way inhibit others’ growth.
Modelling of dynamic interactions in nature allows us to understand better how
these complex interactions and processes work. The well-known model that regards
dynamic of population models is the Lotka-Volterra model. The investigation of the
Lotka-Volterra model is one of the dominant themes in mathematical ecology due
to its importance. The Lotka-Volterra model with delays has received more and
more attentions and has had lots of nice results [2, 12, 14, 20, 41]. More details of
the Lotka-Volterra model with delays are discussed in the books by Gopalsamy [3]
and Kuang [19].

On the other hand, in the real world, the population models are inevitably
affected by the environmental noise which is an important component in an ecosys-
tem [4,5,21]. Moreover, May [34] has pointed out the fact that due to environmental
noise, the birth rate, carrying capacity, competition coefficient and other parameters
involved with the system exhibit random fluctuation to a greater or lesser extent [22].
Sometimes, large amplitude fluctuation in population will lead to the extinction of
certain species, which does not happen in deterministic models. Particularly, in
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the control theory, it has been noted that noise cannot only have a destabilising
effect but can also have a stabilising effect [36]. Recently, it has also been revealed
by Mao etc [37] that the environmental noise can suppress a potential population
explosion. Consequently the dynamic of differential equation models with parame-
ters perturbations [1, 7, 13,17,18, 23–25,32,33, 43] and references therein have been
considered. A stochastic logistic model with regime switching was discussed in Liu
etc [23,24], which did not consider the n-species Lotka-Volterra model. A stochastic
n-species Lotka-Volterra competition model was discussed in Jiang etc [17], and the
asymptotic behavior of the stochastic Lotka-Volterra model with multiple delays
was investigated in Hu etc [13], while they did not discuss non-autonomous Lotka-
Volterra model. N-species non-autonomous Lotka-Volterra competitive models with
delays and impulsive perturbations were discussed in Zhang etc [43] without infinite
delay. Global asymptotic stability of a stochastic Lotka-Volterra model with infinite
delays was considered in Huang etc [7], which did not discuss the permanence and
extinction of the Lotka-Volterra model. While, from the viewpoint of applications,
it is critical to find out when the population will go to extinction or survival. In ad-
dition, more motivations of stochastic population models can be seen in [26–29,39].
Global stability of discrete-time coupled systems on networks and its applications
was analyzed in Su and Li etc [26,39]. Dynamics of a Leslie-Gower Holling-type II
predator-prey system with Lévy jumps was discussed in Liu and Wang [27]. Dy-
namics of a two-prey one-predator system in random environments was considered
in Liu and Wang [28]. Optimal harvesting of a stochastic Logistic model with time
delay was investigated in Liu and Bai [29].

A major problem in population biology is to understand what determines ex-
tinction of a population. Population extinction is often a result of habitat destruc-
tion and modification which can be widespread. Moreover, dramatic changes in
ecosystem structure or function often caused by the species additions in the form
of invasive species. In addition, the extinction of native populations may caused by
the growth of invasive species [6]. Obviously, the risk of extinction is greater for
populations consisting of a few individuals than for those having many individuals.
Also, it is greater for populations whose densities are subject to large variations
through time than for populations with temporal variability. Moreover, even large
populations may be destroyed by some extraordinary perturbation [38]. When the
time is sufficiently large the population of some species may not become extinct,
but the size of that population may be close to zero so that the species can be
endangered. In other words, there exists a critical number between extinction and
survival of population. In this sense, Ma and Hallam [15,30] proposed the concepts
of non-persistence in the mean and weak persistence for some deterministic models
and Lu etc [31] applied this concepts to stochastic logistic models instead of the
stochastic Lotka-Volterra model.

Inspired by works referred above, in this paper, we will investigate the persis-
tence and extinction of a general stochastic non-autonomous Lotka-Volterra model
with delays. To our knowledge, there are few results of this aspect for the s-
tochastic non-autonomous Lotka-Volterra model. Moreover, all the publications
have not obtained the persistence-extinction threshold for the general stochastic
non-autonomous Lotka-Volterra model with delays. The problems above are ex-
plored and some main results are given in this paper. The general stochastic non-
autonomous Lotka-Volterra model with delays has a unique positive global solution
is investigated. For this model, sufficient conditions for extinction, non-persistence
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in the mean, weak persistence and stochastic permanence are estabilished. The
influences of the stochastic noises to the properties of the stochastic model are dis-
cussed. Comparing with deterministic results [8, 9, 42], if the noise is sufficiently
small, the property permanence that the related deterministic system possesses is
preserved in the stochastic model. However, if the noise is sufficiently large, the
properties of the system may be changed greatly by the stochastic noises. For ex-
ample, the solution to the associated stochastic model is extinct with probability
one caused by the noise is sufficiently large, although the solution to the original de-
terministic model may be persistent. The critical number between weak persistence
and extinction is obtained.

The rest of the paper is arranged as follows. The general non-autonomous
Lotka-Volterra model with delays and stochastic perturbation is formulated and
some notations and preliminaries are given in Section 2. Section 3 shows that the
general non-autonomous Lotka-Volterra model has a unique positive global solution.
Then, sufficient conditions for extinction, non-persistence in the mean, weak per-
sistence and stochastic permanence are given in Section 4. The simulation results
in Section 5 are given to illustrate the main results obtained in this paper. Finally,
the conclusions are given in Section 6.

2. Problem formulation and preliminaries

A classical non-autonomous Lotka-Volterra model with time-varying and infinite
delays can be expressed as follows

dxi(t)

dt
=xi(t)[ri(t)−

n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)], 1 ≤ i ≤ n, 1 ≤ j ≤ n, (2.1)

where x(t) = (x1(t), . . . , xn(t))T ; xi(t) and ri(t) are respectively the population size
and intrinsic exponential growth rate for the ith species at time t. aij(t), bij(t)
and cij(t) represent the effects of interspecific (for i 6= j) and intraspecific (for
i = j) interaction at time t; τij(t) ≥ 0 represents the time-varying delays which
are very often present in models from population dynamics, neurosciences, ecology,
epidemiology, chemistry and other sciences. Moreover, infinite delays have been
considered in equations used in mathematical biology since the works of Volterra,
to translate the cumulative effect of the past history of a system. µij(θ) is the
probability measure on (−∞, 0], 1 ≤ i, j ≤ n.

In practice, because of environmental noise, the birth rate, carrying capacity,
competition coefficient and other parameters will be affected by the stochastic noise.
The intrinsic growth rate of the ith species ri(t)(1 ≤ i ≤ n) at time t is estimated
by an average value plus an error term. ri(t) is used to denote the average growth
rate, then the intrinsic growth rate becomes

ri(t)→ ri(t) + σi(t)Ḃi(t),

and the effects of interspecific (for i 6= j) and intraspecific (for i = j) interaction
aij(t)(1 ≤ i, j ≤ n) at time t is estimated by an average value plus an error term.
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So aij(t) is replaced by

−aij(t)→ −aij(t) + δij(t)Ḃij(t).

Here σi(t) and δij(t)(1 ≤ i, j ≤ n) are continuous nonnegative bounded functions on
R̄+ = [0,+∞). σ2

i (t) and δ2
ij(t)(1 ≤ i, j ≤ n) represents the intensity of the white

noise at time t. Ḃi(t) and Ḃij(t) are the white noises, Bi(t) and Bij(t) are the one-
dimensional Brownian motions defined on a complete probability space (Ω,F ,P).
(Ω,F ,P) with a filtration {Ft}t∈R̄+

satisfying the usual conditions(i.e.,it is right
continuous and increasing while F0 contains all P-null sets). As a result, determinis-
tic equation (2.1) becomes the following stochastic non-autonomous Lotka-Volterra
model:

dxi(t) =xi(t)[ri(t)−
n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)]dt+ xi(t)σi(t)dBi(t)

+ xi(t)

n∑
j=1

δij(t)xj(t)dBij(t), 1 ≤ i ≤ n, 1 ≤ j ≤ n, (2.2)

which will be studied in this paper. Let the initial data ξi(θ)(1 ≤ i ≤ n) be positive
and belong to the friendly spaces Cr [10] which is defined by

Cr = {ϕ ∈ C((−∞, 0]; (0,+∞)) : ‖ϕ‖Cr = sup
−∞<θ≤0

erθ|ϕ(θ)| < +∞, r > 0}.

Cr is an admissible Banach space.
For system (2.2) we always assume:
(H1)µij(θ)(1 ≤ i, j ≤ n) is the probability measure on (−∞, 0] satisfying

µijr =
∫ 0

−∞ e−2rθdµij(θ) < +∞. Obviously, the above assumption is satisfied when

µij(θ) = ekrθ(k > 2) for θ ≤ 0, hence there exists a large number of these probability
measures.

(H2): ri(t), aij(t), bij(t) and cij(t)(1 ≤ i, j ≤ n) are continuous and bounded
function on R̄+ and min1≤i,j≤n inft∈R̄+

aij(t) > 0.
(H3): τij(t)(1 ≤ i, j ≤ n) are continuously differentiable functions with 0 ≤

τij(t) ≤ τM and 1− τ̇ij(t) > 0 for t ∈ R, where τM is a constant. ∆−1
ij (t) is inverse

function of ∆ij(t) = t− τij(t).
For the aim of simplicity, we define the following notations:

fu = sup
t∈R

f(t), f l = inf
t∈R

f(t), 〈xi(t)〉 =
1

t

∫ t

0

xi(s)ds,

x∗i = lim sup
t→+∞

xi(t), xi∗ = lim inf
t→+∞

xi(t), R+ = (0,+∞),

g∗i = lim sup
t→+∞

t−1

∫ t

0

(ri(t)−
σ2
i (s)

2
)ds, 1 ≤ i ≤ n.

For any sequence {dij(t)}(1 ≤ i, j ≤ n), define

(d̄uij) = max
1≤i,j≤n

sup
t∈R

dij(t), (d̃lij) = min
1≤i,j≤n

inf
t∈R

dij(t).

The following definitions are commonly used and we list them here.
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Definition 2.1. (a) The population xi(t) is said to go to extinction a.s. if
limt→+∞ xi(t) = 0.

(b) The population xi(t) is said to be non-persistence in the mean a.s. (see e.g.,
[30]) if lim supt→+∞〈xi(t)〉 = 0.

(c) The population xi(t) is said to be weak persistence a.s. (see e.g., [15]) if
lim supt→+∞ xi(t) > 0.

(d) The population x(t) = (x1(t), x2(t), . . . , xn(t))T is said to be stochastic per-
manence if for arbitrary ε > 0, there are constants β > 0, H > 0 such that
lim inft→+∞ P{|x(t)| ≥ β} ≥ 1 − ε and lim inft→+∞ P{|x(t)| ≤ H} ≥ 1 − ε,
where | · | denotes the Euclidian norm in Rn+.

3. Non-explosion

Theorem 3.1. Consider the model (2.2), for any given initial value ξ(θ) = (ξ1(θ),
ξ2(θ), . . . , ξn(θ))T and ξi(θ) ∈ Cr(1 ≤ i ≤ n), there is a unique solution x(t) on
t ∈ R and the solution remain in Rn+ with probability 1, in other words, x(t) ∈ Rn+
for all t ∈ R almost surely.

Proof. Since the coefficients of the model (2.2) do not fulfil the linear growth
condition, the general theorems of existence and uniqueness cannot be implemented
for this equation. However, they are locally Lipschitz continuous, hence for any
given positive initial condition ξ(θ) = (ξ1(θ), ξ2(θ), . . . , ξn(θ))T , θ ∈ (−∞, 0] and
ξi(θ) ∈ Cr(1 ≤ i ≤ n), there is a unique local solution x(t) on t ∈ (−∞, τe), where
τe is the explosion time. To show this solution x(t) is global, namely, τe = +∞, a.s.
Let k0 > 0 be sufficiently large for

1

k0
< min
−∞<θ≤0

|ξ(θ)| ≤ max
−∞<θ≤0

|ξ(θ)| < k0.

For each time integer k ≥ k0, define the stopping time

τk = inf{t ∈ (−∞, τe) : xi(t) ≤
1

k
or xi(t) ≥ k}, 1 ≤ i ≤ n,

where throughout this paper we set inf Ø = +∞ (as usual Ø denotes the empty set);
Clearly, τk is increasing as k → +∞. Set τ+∞ = limk→+∞ τk, whence τ+∞ ≤ τe a.s.
and x(t) ∈ Rn+ a.s. for all t ≥ 0. In other words, to complete the proof all we need
to show is that τ+∞ = +∞ a.s. To show this statement, let us define a C2−function
V : Rn+ → R+ by V (x) =

∑n
i=1[
√
xi − 1 − 0.5 log(xi)], where x = (x1, · · · , xn)T .

Let k ≥ k0 and T > 0 be arbitrary. For 0 ≤ t ≤ τk ∧ T , applying the Itô’s formula
to Eq. (2.2), we have

d[

n∑
i=1

n∑
j=1

∫ t

t−τij(t)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(t))]

=

n∑
i=1

n∑
j=1

[
x2
j (t)

1− τ̇ij(∆−1
ij (t))

− x2
j (t− τij(t))]dt+

n∑
i=1

1

2
ri(t)[x

0.5
i (t)− 1]dt

−
n∑
i=1

n∑
j=1

1

2
aij(t)[x

0.5
i (t)− 1]xj(t)dt+

n∑
i=1

n∑
j=1

1

2
bij(t)xj(t− τij(t))[x0.5

i (t)− 1]dt
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+

n∑
i=1

n∑
j=1

1

2
cij(t)[x

0.5
i (t)− 1]×

∫ 0

−∞
xj(t+ θ)dµij(θ))dt

+

n∑
i=1

1

2
[−0.25x0.5

i (t) +
1

2
]σ2
i (t)dt+

n∑
i=1

1

2
[−0.25x0.5

i (t) +
1

2
][

n∑
j=1

δij(t)xj(t)]
2dt

+

n∑
i=1

1

2
[x0.5
i (t)− 1]σi(t)dBi(t) +

n∑
i=1

1

2
[x0.5
i (t)− 1](

n∑
j=1

δij(t)xj(t))dBij(t)

≤
n∑
i=1

n∑
j=1

[
x2
j (t)

1− τ̇ij(∆−1
ij (t))

− x2
j (t− τij(t))]dt+

n∑
i=1

1

2
ri(t)[x

0.5
i (t)− 1]dt

+

n∑
i=1

n∑
j=1

1

16
b2ij(t)[x

0.5
i (t)− 1]2dt−

n∑
i=1

n∑
j=1

1

2
aij(t)[x

0.5
i (t)− 1]xj(t)dt

+

n∑
i=1

n∑
j=1

x2
j (t− τij(t))dt+

n∑
i=1

n∑
j=1

1

16
c2ij(t)[x

0.5
i (t)− 1]2dt

+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)dt+

n∑
i=1

1

2
[−1

4
x0.5
i (t) +

1

2
]σ2
i (t)dt

+

n∑
i=1

1

2
[−1

4
x0.5
i (t) +

1

2
][

n∑
j=1

δij(t)xj(t)]
2dt+

n∑
i=1

1

2
[x0.5
i (t)− 1]σi(t)dBi(t)

+

n∑
i=1

1

2
[x0.5
i (t)− 1](

n∑
j=1

δij(t)xj(t))dBij(t)

=

n∑
i=1

n∑
j=1

x2
j (t)

1− τ̇ij(∆−1
ij (t))

dt+

n∑
i=1

1

2
ri(t)[x

0.5
i (t)− 1]dt

−
n∑
i=1

n∑
j=1

1

2
aij(t)[x

0.5
i (t)− 1]xj(t)dt+

n∑
i=1

n∑
j=1

1

16
b2ij(t)[x

0.5
i (t)− 1]2dt

+

n∑
i=1

n∑
j=1

1

16
c2ij(t)[x

0.5
i (t)− 1]2dt+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)dt

− 1

8

n∑
i=1

σ2
i (t)x0.5

i (t)dt+
1

4

n∑
i=1

σ2
i (t)dt− 1

8

n∑
i=1

x0.5
i (t)[

n∑
j=1

δij(t)xj(t)]
2dt

+
1

4

n∑
i=1

[

n∑
j=1

δij(t)xj(t)]
2dt+

n∑
i=1

1

2
[x0.5
i (t)− 1]σi(t)dBi(t)

+

n∑
i=1

1

2
[x0.5
i (t)− 1](

n∑
j=1

δij(t)xj(t))dBij(t)

=F (x(t))dt+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)dt− n

n∑
j=1

x2
j (t)dt

+

n∑
i=1

1

2
[x0.5
i (t)− 1]σi(t)dBi(t) +

n∑
i=1

1

2
[x0.5
i (t)− 1](

n∑
j=1

δij(t)xj(t))dBij(t),



796 Q. Wang, Y. G. Yu & S. Zhang

where

F (x(t)) =

n∑
i=1

n∑
j=1

x2
j (t)

1− τ̇ij(∆−1
ij (t))

+

n∑
i=1

1

2
ri(t)[x

0.5
i (t)− 1]

−
n∑
i=1

n∑
j=1

1

2
aij(t)[x

0.5
i (t)− 1]xj(t) + n

n∑
j=1

x2
j (t)

+

n∑
i=1

n∑
j=1

1

16
b2ij(t)[x

0.5
i (t)− 1]2 +

n∑
i=1

n∑
j=1

1

16
c2ij(t)[x

0.5
i (t)− 1]2

− 1

8

n∑
i=1

σ2
i (t)x0.5

i (t) +
1

4

n∑
i=1

σ2
i (t)

− 1

8

n∑
i=1

x0.5
i (t)[

n∑
j=1

δij(t)xj(t)]
2 +

1

4

n∑
i=1

[

n∑
j=1

δij(t)xj(t)]
2.

With the fact that xi(t) ≤
∑n
i=1 xi(t) ≤ n|x(t)|, it is easy to see that F (x(t))

is bounded on Rn+. In other words, there exists a positive constant K such that
F (x(t)) ≤ K . We therefore obtain that

d[

n∑
i=1

n∑
j=1

∫ t

t−τij(t)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(t))]

≤Kdt+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)dt− n

n∑
j=1

x2
j (t)dt

+

n∑
i=1

1

2
[x0.5
i (t)− 1]σi(t)dBi(t) +

n∑
i=1

1

2
[x0.5
i (t)− 1](

n∑
j=1

δij(t)xj(t))dBij(t).

Integrating both sides from 0 to t, and then taking expectations, we have

E[

n∑
i=1

n∑
j=1

∫ t

t−τij(t)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(t))]

≤
n∑
i=1

n∑
j=1

∫ 0

−τij(0)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(0)) +Kt

+ E

n∑
i=1

n∑
j=1

∫ t

0

∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds− En

n∑
j=1

∫ t

0

x2
j (s)ds. (3.1)

Moreover, we can derive that

n∑
i=1

n∑
j=1

∫ t

0

∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds

=

n∑
i=1

n∑
j=1

∫ t

0

[

∫ −s
−∞

x2
j (s+ θ)dµij(θ) +

∫ 0

−s
x2
j (s+ θ)dµij(θ)]ds

=

n∑
i=1

n∑
j=1

∫ t

0

ds

∫ −s
−∞

e2r(s+θ)x2
j (s+ θ)e−2r(s+θ)dµij(θ)
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+

n∑
i=1

n∑
j=1

∫ 0

−t
dµij(θ)

∫ t

−θ
x2
j (s+ θ)ds

≤
n∑
i=1

n∑
j=1

‖ξj‖2Cr

∫ t

0

e−2rsds

∫ 0

−∞
e−2rθdµij(θ) +

n∑
i=1

n∑
j=1

∫ 0

−∞
dµij(θ)

∫ t

0

x2
j (s)ds

≤
n∑
i=1

n∑
j=1

‖ξj‖2Crµijrt+ n

n∑
j=1

∫ t

0

x2
j (s)ds.

Consequently,

E[

n∑
i=1

n∑
j=1

∫ t

t−τij(t)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(t))]

≤
n∑
i=1

n∑
j=1

∫ 0

−τij(0)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(0)) +Kt+

n∑
i=1

n∑
j=1

‖ξj‖2Crµijrt.

Let t = τk ∧ T , we obtain that

E[

n∑
i=1

n∑
j=1

∫ τk∧T

τk∧T−τij(τk∧T )

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(τk ∧ T ))]

≤
n∑
i=1

n∑
j=1

∫ 0

−τij(0)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(0)) +K(τk ∧ T )

+

n∑
i=1

n∑
j=1

‖ξj‖2Crµijr(τk ∧ T ).

From ˙τij(∆
−1
ij (t)) < 1, we have

EV (x(τk ∧ T )) ≤
n∑
i=1

n∑
j=1

∫ 0

−τij(0)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(0)) +KT

+

n∑
i=1

n∑
j=1

‖ξj‖2CrµijrT.

Note that for every ω ∈ {τk ≤ T}, xi(τk, ω) equals either k or 1
k , and hence

V (x(τk, ω)) is no less than either
√
k − 1− 0.5 log(k) or

√
1/k − 1− 0.5 log(1/k) =√

1/k − 1 + 0.5 log(k). Consequently,

V (x(τk, ω)) ≥ ([
√
k − 1− 0.5 log(k)] ∧ [

√
1/k − 1 + 0.5 log(k)]).

It then follows from (3.1) that

n∑
i=1

n∑
j=1

∫ 0

−τij(0)

x2
j (s)

1− τ̇ij(∆−1
ij (s))

ds+ V (x(0)) +KT +

n∑
i=1

n∑
j=1

‖ξj‖2CrµijrT

≥E[I{τk≤T}(ω)V (x(τk, ω))]

≥P{τk ≤ T}([
√
k − 1− 0.5 log(k)] ∧ [

√
1/k − 1 + 0.5 log(k)]),
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where I{τk≤T} is the indicator function of {τk ≤ T}. Letting k → +∞, then we can
get limk→+∞ P{τk ≤ T} = 0 and P{τ+∞ ≤ T} = 0. Since T > 0 is arbitrary, then
P{τ+∞ < +∞} = 0, so P{τ+∞ = +∞} = 1 as required. So the proof is completed.

4. Persistence and extinction for model (2.2)

In this section, the extinction, non-persistence in the mean, weak persistence and
stochastic permanence of model (2.2) are discussed.

Theorem 4.1. If g∗i < 0 and inft∈R̄+
{aij(t)−

bij(∆
−1
ij (t))

1−τ̇ij(∆−1
ij (t))

−cuij} ≥ 0(1 ≤ i, j ≤ n),

then the ith population xi(t) of model (2.2) goes to extinction a.s.

Proof. Case 1. bij(t) > 0 and cij(t) > 0:
Now applying the Itô’s formula to Eq. (2.2), one can get

d

n∑
j=1

∫ t

t−τij(t)

bij(∆
−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ d lnxi(t)

=

n∑
j=1

[
bij(∆

−1
ij (t))xj(t)

1− τ̇ij(∆−1
ij (t))

− bij(t)xj(t− τij(t))]dt+ [ri(t)−
σ2
i (t)

2
−

n∑
j=1

aij(t)xj(t)

+

n∑
j=1

bij(t)xj(t− τij(t)) +

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)

−
[
∑n
j=1 δij(t)xj(t)]

2

2
]dt+ σi(t)dBi(t) +

n∑
j=1

δij(t)xj(t)dBij(t).

Then,

n∑
j=1

[

∫ t

t−τij(t)

bij(∆
−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds−
∫ 0

−τij(0)

bij(∆
−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds]

+ lnxi(t)− lnxi(0)

=

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
bij(∆

−1
ij (s))

1− ˙τij(∆
−1
ij (s))

)xj(s)

+

n∑
j=1

cij(s)

∫ 0

−∞
xj(s+ θ)dµij(θ)−

[
∑n
j=1 δij(s)xj(s)]

2

2
]ds

+M1
i (t) +M2

i (t), (4.1)

where M1
i (t) =

∫ t
0
σi(s)dBi(s) and M2

i (t) =
∫ t

0

∑n
j=1 δij(s)xj(s)dBij(s). By hy-

pothesis H1, ∫ t

0

n∑
j=1

cij(s)

∫ 0

−∞
xj(s+ θ)dµij(θ)ds

=

n∑
j=1

∫ t

0

cij(s)ds

∫ −s
−∞

er(s+θ)xj(s+ θ)e−r(s+θ)dµij(θ)
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+

n∑
j=1

∫ 0

−t
dµij(θ)

∫ t

−θ
cij(s)xj(s+ θ)ds

≤
n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt) +

n∑
j=1

cuij

∫ t

0

xj(s)ds.

Consequently, Eq. (4.1) becomes as follow:

n∑
j=1

∫ t

t−τij(t)
[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds−
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds

+ lnxi(t)− lnxi(0)

≤
∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuij)xj(s)

−
[
∑n
j=1 δij(s)xj(s)]

2

2
]ds+

n∑
j=1

1

r
cuij‖ξj‖crµijr(1− e−rt)

+M1
i (t) +M2

i (t). (4.2)

The quadratic form of M1
i (t) is 〈M1

i (t),M1
i (t)〉 =

∫ t
0
σ2
i (s)ds ≤ (σui )2t. Making use

of the strong law of large numbers for martingales [35] leads to

lim
t→+∞

M1
i (t)

t
= 0, a.s. (4.3)

The quadratic form of M2
i (t) is 〈M2

i (t),M2
i (t)〉 =

∫ t
0
[
∑n
j=1 δij(s)xj(s)]

2ds. By
virtue of the exponential martingale inequality [35], for any positive constants T0, α
and β, we have

P{ sup
0≤t≤T0

[M2
i (t)− α

2
〈M2

i (t),M2
i (t)〉] > β} ≤ e−αβ . (4.4)

Choose T0 = k, α = 1, β = 2 ln k. Then it following that

P{ sup
0≤t≤k

[M2
i (t)− 1

2
〈M2

i (t),M2
i (t)〉] > 2 ln k} ≤ 1

k2
.

Making use of the Borel-Cantelli lemma [35], we can get that for almost all ω ∈ Ω,
there is a random integer k0 = k0(ω) such that for k ≥ k0, sup0≤t≤k[M2

i (t) −
1
2 〈M

2
i (t),M2

i (t)〉] ≤ 2 ln k. This implies that

M2
i (t) ≤ 2 ln k +

1

2
〈M2

i (t),M2
i (t)〉 = 2 ln k +

1

2

∫ t

0

[

n∑
j=1

δij(s)xj(s)]
2ds,

for all 0 ≤ t ≤ k, k ≥ k0 a.s. Substituting this inequality into (4.2), we can obtain
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that

n∑
j=1

∫ t

t−τij(t)
[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+ lnxi(t)− lnxi(0)

≤
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)

−
bij(∆

−1
ij (s))

1− ˙τij(∆
−1
ij (s))

− cuij)xj(s)]ds+ 2 ln k +

n∑
j=1

1

r
cuij‖ξj‖crµijr(1− e−rt) +M1

i (t).

Therefore,

lnxi(t)− lnxi(0)

≤
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)

−
bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuij)xj(s)]ds+ 2 ln k +

n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt)

+M1
i (t), (4.5)

for all 0 ≤ t ≤ k, k ≥ k0 a.s. In other words, we can get that for 0 < k − 1 ≤ t ≤
k, k ≥ k0,

t−1{lnxi(t)− lnxi(0)}

≤t−1
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+ t−1

∫ t

0

[ri(s)−
σ2
i (s)

2
]ds

+ 2(k − 1)−1 ln k + t−1
n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt) +M1

i (t)/t. (4.6)

Taking superior limit on both sides of (4.6) and using (4.3), we have that

lim supt→+∞
ln xi(t)

t ≤ g∗i . That is to say, if g∗i < 0, one can see that limt→+∞ xi(t) =
0 a.s.

Case 2. bij(t) > 0 and cij(t) ≤ 0; bij(t) ≤ 0 and cij(t) > 0; bij(t) ≤ 0 and
cij(t) ≤ 0.

Based on the arguments above and comparison theorem of stochastic equations
[42], we can easily draw the conclusion. So the proof is completed.

Theorem 4.2. If g∗i = 0 and inft∈R̄+
{aij(t)−

bij(∆
−1
ij (t))

1−τ̇ij(∆−1
ij (t))

−cuij} > 0(1 ≤ i, j ≤ n),

then the ith population xi(t) of model (2.2) is non-persistent in the mean a.s.

Proof. Case 1. bij(t) > 0 and cij(t) > 0:
In view of (4.5), one can get that

lnxi(t)− lnxi(0)

≤
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)
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−
bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuij)xj(s)]ds+ 2 ln k +

n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt) +M1

i (t),

for all 0 ≤ t ≤ k, k ≥ k0 a.s. Note that for ∀ε > 0,∃T , such that

t−1
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+ t−1
n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt)

+
2 ln k

t
+
M1
i (t)

t
< ε,

for sufficiently large t satisfying t > T . Therefore,

lnxi(t)− lnxi(0)

t

≤t−1
n∑
j=1

∫ 0

−τij(0)

[
bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

]ds+ t−1

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)

−
bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuij)xj(s)]ds+ t−1
n∑
j=1

1

r
cuij‖ξj‖Crµijr(1− e−rt)

+
2 ln k

t
+
M1
i (t)

t

<ε− t−1

∫ t

0

n∑
j=1

(aij(s)−
bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuij)xj(s)ds,

for all T ≤ k − 1 ≤ t, k ≥ k0 a.s.

Define hi(t) =
∫ t

0
xi(s)ds, N = min1≤j≤n infs∈R̄+

[aij(s) −
bij(∆

−1
ij (s))

1−τ̇ij(∆−1
ij (s))

− cuij ],
with the fact that xi(t) ≤

∑n
i=1 xi(t) ≤ n|x(t)|, we have

ln(dhi(t)/dt) < εt−Nhi(t) + lnxi(0), t > T.

Consequently,

eNhi(t)(
dhi(t)

dt
) < xi(0)eεt, t > T.

Integrating this inequality from T to t,

N−1[eNhi(t) − eNhi(T )] < xi(0)ε−1[eεt − eεT ].

Rewriting this inequality,

eNhi(t) < eNhi(T ) + xi(0)Nε−1eεt − xi(0)Nε−1eεT .

Taking the logarithm of both sides,

hi(t) < N−1 ln(xi(0)Nε−1eεt + eNhi(T ) − xi(0)Nε−1eεT ).

i.e.

{t−1

∫ t

0

xi(s)ds}

≤{t−1N−1 ln(xi(0)Nε−1eεt + eNhi(T ) − xi(0)Nε−1eεT )}∗. (4.7)
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An application of the L’Hospital’s rule, one can obtain

〈xi(t)〉∗ ≤ N−1{t−1 ln[xi(0)Nε−1eεt]}∗ =
ε

N
.

Since ε is arbitrary, we have 〈xi(t)〉∗ = 0, which is the required assertion.

Case 2. bij(t) > 0 and cij(t) ≤ 0; bij(t) ≤ 0 and cij(t) > 0; bij(t) ≤ 0 and
cij(t) ≤ 0.

According to the arguments above and comparison theorem of stochastic equa-
tions [16], we can easily draw the conclusion. So the proof is completed.

Theorem 4.3. If g∗i > 0, bij(t) ≥ 0, cij(t) ≥ 0, r ≥ 1 and there exists ε2 ∈ (0, 2r)

such that inft∈R̄+
{eε2(t+τij(t))− e

ε2(∆
−1
ij

(t))

1−τ̇ij(t) } ≥ 0, inft∈R̄+
{aij(t)−

e
τij(∆

−1
ij

(t))
bij(∆

−1
ij (t))

1−τ̇ij(∆−1
ij (t))

−
cuijµijr} > 0, then the ith population xi(t) of model (2.2) is weak persistent a.s.

Proof. To begin with, let us claim that

lim sup
t→+∞

[t−1 lnxi(t)] ≤ 0 a.s. (4.8)

Applying Itô’s formula to Eq. (2.2), one can obtain

d(

n∑
j=1

∫ t

t−τij(t)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ et lnxi(t))

=et[lnxi(t) + ri(t)−
σ2
i (t)

2
−

n∑
j=1

(aij(t)−
eτij(∆

−1
ij (t))bij(∆

−1
ij (t))

1− ˙τij(∆
−1
ij (t))

)xj(t)

−
[
∑n
j=1 δij(t)xj(t)]

2

2
+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)]dt+ etσi(t)dBi(t)

+ et
n∑
j=1

δij(t)xj(t)dBij(t).

Thus,

n∑
j=1

∫ t

t−τij(t)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds

−
n∑
j=1

∫ 0

−τij(0)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ et lnxi(t)− lnxi(0)

=

∫ t

0

es[lnxi(s) + ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
eτij(∆

−1
ij (s))bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

)xj(s)

+

n∑
j=1

cij(s)

∫ 0

−∞
xj(s+ θ)dµij(θ)−

[
∑n
j=1 δij(s)xj(s)]

2

2
]ds+N1

i (t) +N2
i (t),
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where N1
i (t) =

∫ t
0
esσi(s)dBi(s), N

2
i (t) =

∫ t
0
es

∑n
j=1 δij(s)xj(s)dBij(s). Now,

∫ t

0

es
n∑
j=1

cij(s)

∫ 0

−∞
xj(s+ θ)dµij(θ)ds

=

n∑
j=1

∫ t

0

cij(s)e
s[

∫ −s
−∞

xj(s+ θ)dµij(θ) +

∫ 0

−s
xj(s+ θ)dµij(θ)]ds

=

n∑
j=1

∫ t

0

cij(s)e
sds

∫ −s
−∞

er(s+θ)xj(s+ θ)e−r(s+θ)dµij(θ)

+

n∑
j=1

∫ 0

−t
dµij(θ)

∫ t

−θ
cij(s)e

sxj(s+ θ)ds

=

n∑
j=1

∫ t

0

cij(s)e
sds

∫ −s
−∞

er(s+θ)xj(s+ θ)e−r(s+θ)dµij(θ)

+

n∑
j=1

∫ 0

−t
dµij(θ)

∫ t+θ

0

cij(s− θ)es−θxj(s)ds

≤
n∑
j=1

cuijµijr‖ξj‖Cr t+

n∑
j=1

cuijµijr

∫ t

0

esxj(s)ds.

Therefore,

n∑
j=1

∫ t

t−τij(t)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds

−
n∑
j=1

∫ 0

−τij(0)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ et lnxi(t)− lnxi(0)

≤
∫ t

0

es[lnxi(s) + ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
eτij(∆

−1
ij (s))bij(∆

−1
ij (s))

1− ˙τij(∆
−1
ij (s))

− cuijµijr)xj(s)−
[
∑n
j=1 δij(s)xj(s)]

2

2
]ds+

n∑
j=1

cuijµijr‖ξj‖Cr t

+N1
i (t) +N2

i (t). (4.9)

Note thatN1
i (t)(1 ≤ i ≤ n) is a local martingale with the quadratic form 〈N1

i (t), N1
i (t)〉

=
∫ t

0
e2sσ2

i (s)ds. N2
i (t)(1 ≤ i ≤ n) is also a local martingale with the quadratic for-

m 〈N2
i (t), N2

i (t)〉 =
∫ t

0
e2s[

∑n
j=1 δij(s) × xj(s)]2ds. Following from the exponential

martingale inequality (4.4) by choosing T0 = µk, α = e−µk, β = ρeµk ln k, we get
that P{sup0≤t≤µk[Nλ

i (t)− 0.5e−µk〈Nλ
i (t), Nλ

i (t)〉] > ρeµk ln k} ≤ k−ρ, where ρ > 1
and µ > 1, λ = 1, 2. In view of Borel-Cantelli Lemma [35], for almost all ω ∈ Ω,
there exists a k0(ω) such that

Nλ
i (t) ≤ 0.5e−µk〈Nλ

i (t), Nλ
i (t)〉+ ρeµk ln k, 0 ≤ t ≤ µk (4.10)
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for every k ≥ k0(ω). Substituting the above inequality (4.10) into (4.9),

n∑
j=1

∫ t

t−τij(t)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds

−
n∑
j=1

∫ 0

−τij(0)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ et lnxi(t)− lnxi(0)

≤
∫ t

0

es[lnxi(s) + ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
eτij(∆

−1
ij (s))bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuijµijr)xj(s)−
[
∑n
j=1 δij(s)xj(s)]

2

2
]ds+

n∑
j=1

cuijµijr‖ξj‖Cr t

+
e−µk

2

∫ t

0

e2sσ2
i (s)ds+ ρeµk ln k +

e−µk

2

∫ t

0

e2s[

n∑
j=1

δij(s)xj(s)]
2ds+ ρeµk ln k

=

∫ t

0

es[lnxi(s) + ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
eτij(∆

−1
ij (s))bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuijµijr)xj(s) +
es−µkσ2

i (s)

2
−

[
∑n
j=1 δij(s)xj(s)]

2[1− es−µk]

2
]ds

+

n∑
j=1

cuijµijr‖ξj‖Cr t+ 2ρeµk ln k.

By hypothesis (H2) and (H3), it is easy to see that there exists a constant C
independent of k such that

lnxi(s) + ri(s)−
σ2
i (s)

2
−

n∑
j=1

(aij(s)−
eτij(∆

−1
ij (s))bij(∆

−1
ij (s))

1− τ̇ij(∆−1
ij (s))

− cuijµijr)xj(s)

+
es−µkσ2

i (s)

2
−

[
∑n
j=1 δij(s)xj(s)]

2[1− es−µk]

2
≤ C.

for any 0 ≤ s ≤ µk and xi(s) > 0. In other words, for any 0 ≤ t ≤ µk, we have

n∑
j=1

∫ t

t−τij(t)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds

−
n∑
j=1

∫ 0

−τij(0)

es+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds+ et lnxi(t)− lnxi(0)

≤C[et − 1] +

n∑
j=1

cuijµijr‖ξj‖Cr t+ 2ρeµk ln k.

That is to say,

lnxi(t) ≤ e−t lnxi(0) + C[1− e−t] + 2ρeµk−t ln k + e−t
n∑
j=1

cuijµijr‖ξj‖Cr t
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+

n∑
j=1

∫ 0

−τij(0)

es−t+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds.

Consequently, if µ(k − 1) ≤ t ≤ µk and k ≥ k0(ω), one can observe that

t−1 lnxi(t) ≤t−1e−t lnxi(0) + t−1C[1− e−t] + 2t−1ρeµk−t ln k

+ t−1e−t
n∑
j=1

cuijµijr‖ξj‖Cr t

+ t−1
n∑
j=1

∫ 0

−τij(0)

es−t+τij(∆
−1
ij (s))bij(∆

−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds,

which becomes the desired assertion (4.8) by letting t→ +∞.
Next we prove that for arbitrary ε ∈ (0, 1), there is a positive constant H = H(ε)

such that lim inft→+∞ P{|x(t)| ≤ H} ≥ 1− ε. 0 < p < 1, by Itô’s formula, we have

d

n∑
i=1

xpi (t) =

n∑
i=1

pxp−1
i (t)dxi(t) +

n∑
i=1

1

2
p(p− 1)xp−2

i (t)(d(xi(t)))
2

=

n∑
i=1

pxp−1
i (t)[xi(t)(ri(t)−

n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ))dt+ xi(t)σi(t)dBi(t)

+ xi(t)

n∑
j=1

δij(t)xj(t)dBij(t)] +

n∑
i=1

1

2
p(p− 1)σ2

i (t)xpi (t)dt

+

n∑
i=1

1

2
p(p− 1)xpi (t)[

n∑
j=1

δij(t)xj(t)]
2dt

≤[

n∑
i=1

ri(t)px
p
i (t) +

n∑
i=1

n∑
j=1

p2b2ij(t)x
2p
i (t)

4
+

n∑
i=1

n∑
j=1

x2
j (t− τij(t))

+

n∑
i=1

n∑
j=1

p2c2ij(t)x
2p
i (t)

4
+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)]dt

+

n∑
i=1

pxpi (t)σi(t)dBi(t) +

n∑
i=1

pxpi (t)[

n∑
j=1

δij(t)xj(t)]dBij(t)

−
n∑
i=1

1

2
p(1− p)σ2

i (t)xpi (t)dt−
n∑
i=1

1

2
p(1− p)xpi (t)[

n∑
j=1

δij(t)xj(t)]
2dt

=F (x(t))dt− [

n∑
i=1

ε2x
p
i (t) +

n∑
i=1

n∑
j=1

eε2τij(t)x2
j (t)−

n∑
i=1

n∑
j=1

x2
j (t− τij(t))

+

n∑
i=1

n∑
j=1

µijrx
2
j (t)−

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)]dt

+

n∑
i=1

pxpi (t)σi(t)dBi(t) +

n∑
i=1

pxpi (t)(

n∑
j=1

δij(t)xj(t))dBij(t),



806 Q. Wang, Y. G. Yu & S. Zhang

where

F (x(t)) =

n∑
i=1

n∑
j=1

eε2τij(t)x2
j (t) +

n∑
i=1

n∑
j=1

µijrx
2
j (t) +

n∑
i=1

(ε2 + ri(t)p)x
p
i (t)

+

n∑
i=1

n∑
j=1

p2b2ij(t)x
2p
i (t)

4
+

n∑
i=1

n∑
j=1

p2c2ij(t)x
2p
i (t)

4

−
n∑
i=1

1

2
p(1− p)xpi (t)σ

2
i (t)−

n∑
i=1

1

2
p(1− p)xpi [

n∑
j=1

δij(t)xj(t)]
2.

With the fact that xi(t) ≤
∑n
i=1 xi(t) ≤ n|x(t)|, it is easy to see that F (x(t)) is

bounded in Rn+, in other words, M1 = supx(t)∈Rn+ F (x(t)) < +∞. Therefore,

d

n∑
i=1

xpi (t) ≤[M1 −
n∑
i=1

ε2x
p
i (t)−

n∑
i=1

n∑
j=1

eε2τij(t)x2
j (t) +

n∑
i=1

n∑
j=1

x2
j (t− τij(t))]dt

−
n∑
i=1

n∑
j=1

µijrx
2
j (t)dt+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)dt

+ pxpi (t)σi(t)dBi(t) + pxpi (t)(

n∑
j=1

δij(t)xj(t))dBij(t).

Again based on the Itô’s formula, we have

d[eε2t
n∑
i=1

xpi (t)]

=eε2t[

n∑
i=1

ε2x
p
i (t)dt+ d

n∑
i=1

xpi (t)]

≤eε2t[M1 −
n∑
i=1

n∑
j=1

eε2τij(t)x2
j (t) +

n∑
i=1

n∑
j=1

x2
j (t− τij(t))

+

n∑
i=1

n∑
j=1

∫ 0

−∞
x2
j (t+ θ)dµij(θ)−

n∑
i=1

n∑
j=1

µijrx
2
j (t)]dt+ eε2tpxpi (t)σi(t)dBi(t)

+ eε2tpxpi (t)(

n∑
j=1

δij(t)xj(t))dBij(t).

Hence,

eε2tE[

n∑
i=1

xpi (t)]

≤
n∑
i=1

ξpi (0) +
eε2tM1

ε2
− M1

ε2
− E

n∑
i=1

n∑
j=1

∫ t

0

eε2s+ε2τij(s)x2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t

0

eε2sx2
j (s− τij(s))ds+ E

n∑
j=1

∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds
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− E
n∑
i=1

n∑
j=1

∫ t

0

µijre
ε2sx2

j (s)ds

≤
n∑
i=1

ξpi (0) +
eε2tM1

ε2
− M1

ε2
− E

n∑
i=1

n∑
j=1

∫ t

0

eε2s+ε2τij(s)x2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t−τij(t)

−τij(0)

˙(∆−1
ij (s))eε2∆−1

ij (s)x2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds− E

n∑
i=1

n∑
j=1

∫ t

0

µijre
ε2sx2

j (s)ds

=

n∑
i=1

ξpi (0) +
eε2tM1

ε2
− M1

ε2
− E

n∑
i=1

n∑
j=1

∫ t

0

eε2s+ε2τij(s)x2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t−τij(t)

−τij(0)

eε2∆−1
ij (s)x2

j (s)ds

1− τ̇ij(s)
ds− E

n∑
i=1

n∑
j=1

∫ t

0

µijre
ε2sx2

j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds

≤
n∑
i=1

ξpi (0) +
eε2tM1

ε2
− M1

ε2
− E

n∑
i=1

n∑
j=1

∫ t

0

eε2s+ε2τij(s)x2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t−τij(t)

−τij(0)

eε2s+ε2τij(s)x2
j (s)ds− E

n∑
i=1

n∑
j=1

∫ t

0

µijre
ε2sx2

j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds

≤
n∑
i=1

ξpi (0) +
eε2tM1

ε2
− M1

ε2
+ E

n∑
i=1

n∑
j=1

∫ 0

−τij(0)

eε2s+ε2τij(s)x2
j (s)ds

− E
n∑
i=1

n∑
j=1

∫ t

0

µijre
ε2sx2

j (s)ds− E
n∑
i=1

n∑
j=1

µijr

∫ t

0

eε2sx2
j (s)ds

+ E

n∑
i=1

n∑
j=1

∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds.

From hypothesis (H1),∫ t

0

eε2s
∫ 0

−∞
x2
j (s+ θ)dµij(θ)ds

=

∫ t

0

eε2sds

∫ −s
−∞

e2r(s+θ)x2
j (s+ θ)e−2r(s+θ)dµij(θ)

+

∫ 0

−t
dµij(θ)

∫ t+θ

0

eε2(s−θ)x2
j (s)ds

≤‖ξj‖2Crµijrt+ µijr

∫ t

0

eε2sx2
j (s)ds.
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This implies that

lim sup
t→+∞

E[

n∑
i=1

xpi (t)] ≤
M1

ε2
.

On the other hand, we have |x(t)|2 ≤ nmax1≤i≤n supt∈R xi(t)
2, so

|x(t)|p ≤ np/2 max
1≤i≤n

sup
t∈R

xi(t)
p ≤ np/2

n∑
i=1

xpi (t).

Therefore,

lim sup
t→+∞

E|x(t)|p ≤ np/2M1

ε2
.

Setting K = np/2M1

ε2
and choosing p = 1

2 , we can get lim supt→+∞E(
√
|x(t)|) ≤ K.

Now for any ε > 0, let H = K2/ε2. Then by Chebyshev’s inequality,

P{|x(t)| > H} = P{
√
|x(t)| >

√
H} ≤

E(
√
|x(t)|)√
H

.

Hence lim supt→+∞ P{|x(t)| > H} ≤ ε. i.e.

lim inf
t→+∞

P{|x(t)| ≤ H} ≥ 1− ε. (4.11)

Now suppose that g∗i > 0, we will prove lim supt→+∞ xi(t) > 0 a.s. If this assertion
is not true, let F = {lim supt→+∞ xi(t) = 0} and suppose P (F ) > 0. Applying the
Itô’s formula to Eq. (2.2),

t−1 lnxi(t) =t−1 lnxi(0) + t−1

∫ t

0

[ri(s)−
σ2
i (s)

2
−

n∑
j=1

aij(s)xj(s)

+

n∑
j=1

bijxj(s− τij(s)) +

n∑
j=1

cij(s)

∫ 0

−∞
xj(s+ θ)dµij(θ)

−
[
∑n
j=1 δij(s)xj(s)]

2

2
]ds− t−1(

n∑
j=1

∫ t

t−τij(t)

bij(∆
−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds)

+ t−1(

n∑
j=1

∫ 0

−τij(0)

bij(∆
−1
ij (s))xj(s)

1− τ̇ij(∆−1
ij (s))

ds) +M1
i (t)/t+M2

i (t)/t. (4.12)

On the other hand, for ∀ω ∈ F , we have limt→+∞ xi(t, ω) = 0 and the fact that
xi(t) ≤

∑n
i=1 xi(t) ≤ n|x(t)|. The law of large numbers for local martingales [35]

indicates that limt→+∞
M2
i (t)
t = 0. Substituting this equality and Eq. (4.3) into

(4.12),

lim sup
t→+∞

[t−1 lnxi(t, ω)] ≥ lim sup
t→+∞

t−1

∫ t

0

[ri(s)−
σ2
i (s)

2
]ds = g∗i > 0.

Then P(lim supt→+∞[t−1 lnxi(t)] > 0) > 0, which contradicts (4.8). So the proof
is completed.
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When it comes to the study of population model, the role of stochastic perma-
nence indicating the eternal existence of the population, can never be ignorant with
its theoretical and practical significance. So now let us show that the population
xi(t) is stochastic permanent in some cases.

Theorem 4.4. If r̃li ≥ 2(σ̄ui )2, bij(t) ≥ 0, cij(t) ≥ 0(1 ≤ i, j ≤ n) and there exists

ε2 ∈ (0, 2r) such that inft∈R̄+
{eε2(t+τij(t)) − e

ε2(∆
−1
ij

(t))

1−τ̇ij(t) } ≥ 0, then the population

x(t) of model (2.2) is stochastic permanent.

Proof. In the view of (4.11), one can get that lim inft→+∞ P{|x(t)| ≤ H} ≥ 1−ε.
Next, we claim that for arbitrary ε > 0, there is a constant β > 0 such that
lim inft→+∞ P{|x(t)| ≥ β} ≥ 1 − ε. Denote V (x(t)) =

∑n
i=1 xi(t). Applying the

Itô’s formula, we get

dV (x(t)) =

n∑
i=1

xi(t)[ri(t)−
n∑
j=1

aij(t)xj(t) +
n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)]dt+

n∑
i=1

xi(t)σi(t)dBi(t)

+

n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t)dBij(t). (4.13)

Define U(x(t)) = 1
V (x(t)) on t ≥ 0. By the Itô’s formula, we derive from (4.13) that

dU =[−U2(

n∑
i=1

xi(t)[ri(t)−
n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)]) + U3([

n∑
i=1

xi(t)σi(t)]
2

+ [

n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t)]
2)]dt− U2

n∑
i=1

xi(t)σi(t)dBi(t)

− U2
n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t)dBij(t),

dropping x(t) from U(x(t)). Define the function V̄ (x(t)) = U2+p(x(t)), then by the
Itô’s formula, we have

LV̄ (x(t)) =(2 + p)Up[−U3(

n∑
i=1

xi(t)[ri(t)−
n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj(t− τij(t))

+

n∑
j=1

cij(t)

∫ 0

−∞
xj(t+ θ)dµij(θ)]) + U4([

n∑
i=1

xi(t)σi(t)]
2

+ [

n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t)]
2) +

p+ 1

2
U4([

n∑
i=1

xi(t)σi(t)]
2

+ [

n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t)]
2)]. (4.14)
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Since we know that

U

n∑
i=1

xi(t)ri(t) ≥ r̃li, U2
n∑
i=1

xi(t)

n∑
j=1

aij(t)xj(t) ≤ āuij ,

U2(

n∑
i=1

xi(t)σi(t))
2 ≤ (σ̄ui )2, U4(

n∑
i=1

xi(t)

n∑
j=1

δij(t)xj(t))
2 ≤ (δ̄uij)

2.

It follows from (4.14) that

LV̄ (x(t)) ≤(2 + p)(−(r̃li −
p+ 3

2
(σ̄ui )2)U2+p + āuijU

1+p +
p+ 3

2
(δ̄uij)

2Up). (4.15)

Now choose a constant k > 0 sufficiently small such that it satisfies k− (2 + p)(r̃li−
p+3

2 (σ̄ui )2) < 0. Therefore, applying the Itô’s formula to (4.15), we can get that

L[ektV̄ (x(t))]

=kektV̄ (x(t)) + ektLV̄ (x(t))

≤kektU2+p(x(t)) + ekt(2 + p)(−(r̃li −
p+ 3

2
(σ̄ui )2)U2+p + āuijU

1+p +
p+ 3

2
(δ̄uij)

2Up)

=ekt([k − (2 + p)(r̃li −
p+ 3

2
(σ̄ui )2)]U2+p + (2 + p)āuijU

1+p + (2 + p)
p+ 3

2
(δ̄uij)

2Up)

≤Kekt.

This implies

lim sup
t→+∞

EU2+p(x(t)) ≤ K.

For x(t) ∈ Rn+, note that (
∑n
i=1 xi(t))

2+p ≤ n2+p|x(t)|2+p. Consequently,

lim sup
t→+∞

E
1

|x(t)|2+p
≤ n−2−p lim sup

t→+∞
E

1

(
∑n
i=1 xi(t))

2+p
≤ n−2−pK =: d.

So for any ε > 0, setting β = ( εd )
1

2+p , by Chebyshev’s inequality, gets that

P{|x(t)| < β} =P{|x(t)|2+p < β2+p}

=P{ 1

|x(t)|2+p
>

1

β2+p
}

≤
E[ 1
|x(t)|2+p ]

1/β2+p

=β2+pE[
1

|x(t)|2+p
],

which means that lim supt→+∞ P{|x(t)| < β} ≤ β2+pd = ε. We can get that

lim inf
t→+∞

P{|x(t)| ≥ β} ≥ 1− ε.

So the whole proof is completed.
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Remark 4.1. Theorems 4.1-4.3 have a direct and fantastic biological explanation.
It is obvious to see that the extinction and persistence of population xi(t)(1 ≤ i ≤ n)
modeled by (2.2) largely rely on g∗i , bij(t)(1 ≤ j ≤ n), cij(t), r, ε2, inft∈R̄+

{aij(t) −
bij(∆

−1
ij (t))

1−τ̇ij(∆−1
ij (t))

− cuij}, inft∈R̄+
{eε2(t+τij(t) − e

ε2(∆
−1
ij

(t))

1−τ̇ij(t) } ≥ 0 and inft∈R̄+
{aij(t) −

e
τij(∆

−1
ij

(t))
bij(∆

−1
ij (t))

1−τ̇ij(∆−1
ij (t))

− cuijµijr}. If g∗i > 0, bij(t) ≥ 0, cij(t) ≥ 0, r ≥ 1, ε2 ∈ (0, 2r),

inft∈R̄+
{eε2(t+τij(t)) − e

ε2(∆
−1
ij

(t))

1−τ̇ij(t) } ≥ 0 and inft∈R̄+
{aij(t) −

e
τij(∆

−1
ij

(t))
bij(∆

−1
ij (t))

1−τ̇ij(∆−1
ij (t))

−
cuijµijr} > 0, then the population xi(t) will be weak persistence; If g∗i < 0 and

inft∈R̄+
{aij(t) −

bij(∆
−1
ij (t))

1−τ̇ij(∆−1
ij (t))

− cuij} ≥ 0, then the population xi(t) will go to ex-

tinction. That is to say, if inft∈R̄+
{aij(t) −

e
τij(∆

−1
ij

(t))
bij(∆

−1
ij (t))

1−τ̇ij(∆−1
ij (t))

− cuijµijr} > 0,

bij(t) ≥ 0, cij(t) ≥ 0, r ≥ 1, ε2 ∈ (0, 2r) and inft∈R̄+
{aij(t)−

bij(∆
−1
ij (t))

1−τ̇ij(∆−1
ij (t))

− cuij} ≥ 0

hold, then g∗i is the critical number between weak persistence and extinction for the
population xi(t).

Remark 4.2. Generally speaking, as the biology has implied, in Theorem 4.1, if
the specie affected by stochastic environmental noises which plays a dominant role,
then the specie will be extinction a.s. In a word, population probably will go to an
end in the worst cases is revealed in Theorem 4.1. While if the growth rate and the
influences of the stochastic noises cancel each other out, then the effects of interspe-
cific (for i 6= j) and intraspecific (for i = j) interaction at time t, i.e. aij(t) is the
dominant factor. So the living chances are considerably rare is shown in Theorem
4.2. In Theorem 4.3, even though the growth rate is larger than the influences of
the stochastic noises, aij(t) plays the dominant role, then the population size is
limited to zero with the time permitted, however, the opportunity of the survival of
it still exist. In Theorem 4.4, if the growth rate is large enough, then the specie will
be stochastic permanent. This can well explain why the conditions are gradually
stronger from Theorems 4.1-4.3.

Remark 4.3. According to g∗i = lim supt→+∞ t−1
∫ t

0
(ri(s)− σ2

i (s)
2 )ds, we are con-

scious of that the stochastic noise on ri(t) is detrimental to the survival of the
population, while the stochastic noise on aij(t) has hardly impressed on the per-
sistence or extinction of the population. Thus, in true ecological modeling, the
stochastic noise on ri(t) should be considered, while the stochastic noise on aij(t)
could be overlooked in some cases.

5. Examples numerical simulations

In this section, we explore system behavior numerical solutions of the model (2.2).
For convenience, consider the case n = 2 and let the probability measure µij(θ) =
e2.5rθ(i = 1, 2, j = 1, 2) on (−∞, 0]. Thus the non-autonomous stochastic model
(2.2) will be written as

dx(t) =x(t)[r1(t)− a11(t)x(t)− a12(t)y(t) + b11(t)x(t− τ11(t))

+ b12(t)y(t− τ12(t)) + 2.5re2.5tc11(t)

∫ 0

−∞
e2.5rθξ1(θ)dθ
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+ 2.5re2.5tc12(t)

∫ 0

−∞
e2.5rθξ2(θ)dθ + 2.5re2.5tc11(t)

∫ t

0

e2.5rθx(θ)dθ

+ 2.5re2.5tc12(t)

∫ t

0

e2.5rθy(θ)dθ]dt+ σ1(t)(t)x(t)dB(t)

+ δ11(t)x2(t)dB(t) + δ12(t)x(t)y(t)dB(t),

dy(t) =y(t)[r2(t)− a21(t)x(t)− a22(t)y(t) + b21(t)x(t− τ21(t))

+ b22(t)y(t− τ22(t)) + 2.5re2.5tc21(t)

∫ 0

−∞
e2.5rθξ1(θ)dθ

+ 2.5re2.5tc22(t)

∫ 0

−∞
e2.5rθξ2(θ)dθ + 2.5re2.5tc21(t)

∫ t

0

e2.5rθx(θ)dθ

+ 2.5re2.5tc22(t)

∫ t

0

e2.5rθy(θ)dθ]dt+ σ2(t)(t)y(t)dB(t)

+ δ22(t)y2(t)dB(t) + δ21(t)x(t)y(t)dB(t),

x(θ) = ξ1(θ), y(θ) = ξ2(θ), ξi(θ) ∈ Cr, i = 1, 2. (5.1)

By employing the Milstein method [11], Eq. (5.1) can be discretized the two e-
quations, where the integral term is approximated by using the composite θ− rule
as a quadrature [40] and taking ξ1(θ) = e−0.5θ, ξ2(θ) = 2e−0.5θ, τij(t) ≡ 0.3 (i =
1, 2, j = 1, 2). So the discrete approximate solution with respect to Eq. (5.1) is

xk+1 =xk + xk[r1(k∆t)− a11(k∆t)xk − a12(k∆t)yk + b11(k∆t)xk−300

+ b12(k∆t)yk−300 + 2.5c11(k∆t)re−2.5k∆t/2 + 2.5c12(k∆t)re−2.5k∆t

+ 2.5c11(k∆t)re−2.5k∆t
k∑
j=1

e−2.5rj∆txj∆t+ 2.5c12(k∆t)re−2.5k∆t

×
k∑
j=1

e−2.5rj∆txj∆t]∆t+ σ1(k∆t)xk
√

∆tζk +
1

2
σ2

1(k∆t)xk[ζ2
k − 1]∆t

+ δ11(k∆t)x2
k

√
∆tζk +

1

2
δ2
11(k∆t)x2

k[ζ2
k − 1]∆t+ δ12(k∆t)xkyk

√
∆tζk

+
1

2
δ2
12(k∆t)xkyk[ζ2

k − 1]∆t,

yk+1 =yk + yk[r2(k∆t)− a21(k∆t)xk − a22(k∆t)yk + b21(k∆t)xk−300

+ b22(k∆t)yk−300 + 2.5c21(k∆t)re−2.5k∆t/2 + 2.5c22(k∆t)re−2.5k∆t

+ 2.5c21(k∆t)re−2.5k∆t
k∑
j=1

e−2.5rj∆txj∆t+ 2.5c22(k∆t)re−2.5k∆t

×
k∑
j=1

e−2.5rj∆tyj∆t]∆t+ σ2(k∆t)yk
√

∆tζk +
1

2
σ2

2(k∆t)yk[ζ2
k − 1]∆t

+ δ21(k∆t)xkyk
√

∆tζk +
1

2
δ2
21(k∆t)xkyk[ζ2

k − 1]∆t+ δ22(k∆t)y2
k

√
∆tζk

+
1

2
δ2
22(k∆t)y2

k[ζ2
k − 1]∆t,

where ζk(k = 1, 2, . . . , n), are the Gaussian random variables which follow N(0, 1).
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Here, we choose ri(t) = 0.25 + 0.03 sin t (i = 1, 2), aij(t) = 0.3 (j = 1, 2),
bij(t) = 0.01, cij(t) = 0.003, δij(t) = 0.1, r = 1, θ = 0 and step size ∆t = 0.001. The
only difference between conditions of Fig. 1(A-D) is that the representations of σi(t)
are different. In Fig. 1(A), we choose σ2

i (t) ≡ 0.7, then the conditions of Theorem
4.1 are satisfied. In view of Theorem 4.1, the population x(t) and the population
y(t) will go to extinction a.s. In Fig. 1(B), we consider σ2

i (t) = 0.5 + 0.06 sin t,
then the conditions of Theorem 4.2 hold. By virtue of Theorem 4.2, the population
x(t) and the population y(t) are non-persistent in the mean a.s. In Fig. 1(C), we
choose σ2

i (t) ≡ 0.34, then the conditions of Theorem 4.3 are satisfied. That is to say,
the population x(t) and the population y(t) are weak persistent a.s. In Fig. 1(D),
we consider σ2

i (t) ≡ 0.11, then the conditions of Theorem 4.4 hold. Make use of
Theorem 4.4, the population x(t) and the population y(t)are stochastic permanent.
By the numerical simulations, we can find that stochastic noise on ri(t)(1 ≤ i ≤ n)
can change the properties of the population models significantly.
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Figure 1. Persistence and extinction of model (5.1). (A): Extinction a.s. (B): Non-persistence in the
mean a.s. (C): Weak persistence a.s. (D): Stochastic permanence.

6. Conclusions

In this paper, the persistence and extinction of a general stochastic non-autonomous
n-species Lotka-Volterra model with time-varying and infinite delays are investigat-
ed. Sufficient conditions for extinction, non-persistence in the mean, weak persis-
tence and stochastic permanence are established in Theorem 4.1-4.4. The influences
of the stochastic noises to the properties of the stochastic model are discussed. On
one hand, if the noise is small enough, the property permanence that the related
deterministic system possesses is preserved in the stochastic model. On the oth-
er hand, with the increase of stochastic noise, the solution of the considered model
(2.2) will become extinct with probability one, non-persistent in the mean or weakly
persistent has also been shown in this paper. Moreover, the critical value between
extinction and weak persistence is obtained. Through the observation of Theorem
4.1-4.4, there is a very interesting phenomenon that the stochastic noise on ri(t) is
detrimental to the survival of the population but the stochastic noise on aij(t) has
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hardly impressed on the persistence or extinction of the population. Finally, the
numerical simulations are given to confirm the theoretical analysis results.
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