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Abstract Recently, two families of HSS-based iteration methods are con-
structed for solving the system of absolute value equations (AVEs), which is a
class of non-differentiable NP-hard problems. In this study, we establish the
Picard-CSCS iteration method and the nonlinear CSCS-like iteration method
for AVEs involving the Toeplitz matrix. Then, we analyze the convergence
of the Picard-CSCS iteration method for solving AVEs. By using the the-
ory about nonsmooth analysis, we particularly prove the convergence of the
nonlinear CSCS-like iteration solver for AVEs. The advantage of these meth-
ods is that they do not require the storage of coefficient matrices at all, and
the sub-system of linear equations can be solved efficiently via the fast Fourier
transforms (FFTs). Therefore, computational cost and storage can be saved in
practical implementations. Numerical examples including numerical solutions
of nonlinear fractional diffusion equations are reported to show the effective-
ness of the proposed methods in comparison with some existing methods.
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1. Introduction

In the present paper, we are interested in the efficient solutions of absolute value
equations (AVEs), i.e.,

Ax− |x| = b, A ∈ Cn×n, x, b ∈ Cn, (1.1)

where A is a non-Hermitian Toeplitz matrix and |x| = (|x1|, |x2|, . . . , |xn|)H denotes
the component-wise absolute value of the vector x = (x1, x2, . . . , xn)T . Here the
transpose and the conjugate transpose of a matrix A are represented by AT and
AH , respectively. At present, both theoretical and numerical investigations of such
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problems have been extensively studied in recent literature [15,16,18,23,27,33,36].
Additionally, a slightly more extended form of AVEs,

Ax−B|x| = b, A, B ∈ Cm×n, x ∈ Cn, b ∈ Cm, (1.2)

was also discussed in [32] and investigated in a more general context [13, 18]. On
the other side, the system of AVEs (1.1), which is generally equivalent to the linear
complementarity problem (LCP) [7,23], arises from linear programming, quadratic
programming, bimatrix games and other engineering problems (see e.g. [6] for frac-
tional diffusion equations). This means that the system of AVEs is NP-hard in its
general form [15, 18, 23]. If B = 0, then extended AVEs (1.2) reduce to a linear
system Ax = b, which have many applications in the field of scientific computa-
tions [23].

The recent researches concerning AVEs contents can be summarized as the fol-
lowing aspects, one is the theoretical analysis, which focuses on the theorem of
alternatives, various equivalent reformulations, and the existence and nonexistence
of solutions; refer, e.g., to [7,13,27,32] for details, and the other is how to solve AVEs
numerically. In the last decade, based on the fact that the LCP can be reduced to
AVEs, which enjoys a special and simple structure, a lot of numerical methods for
solving AVEs (1.1) can be found in the recent literature; see e.g. [17, 19, 23, 33, 39]
and references therein. For example, a finite computational algorithm that is solved
by a finite succession of linear programs (SLP) in [15], and a semi-smooth Newton
method and its inexact variants are introduced in [1,20] respectively, which largely
shorten the computation time than the SLP method. Furthermore, a smoothing
Newton algorithm was also presented in [7], which was proved to be globally conver-
gent and the convergence rate was quadratic under the condition that the singular
values of A exceed 1. This proposed condition was weaker than the one established
in [20].

In recent years, the Picard-HSS iteration method and the nonlinear HSS-like
iteration method are established to solve the AVEs in [34, 42], respectively. The
sufficient condition is given to guarantee the convergence of the Picard-HSS iteration
method, and numerical experiments are employed to illustrate the effectiveness of
the Picard-HSS and nonlinear HSS-like iteration methods. However, the number
of the inner HSS iteration steps is often problem-dependent and difficult to be
determined in actual computations. Moreover, the iterates can not be updated
timely. It has shown that the nonlinear HSS-like iteration method is more efficient
than the Picard-HSS iteration method in aspects of the defect mentioned above,
which is designed originally for solving weakly nonlinear systems in [5]. In order
to improve the nonlinear HSS-like iteration method, Zhang [40] had extended the
preconditioned HSS (PHSS) method [4] to solve AVEs and also used the relaxation
technique to accelerate his proposed methods. Meanwhile, he successfully achieved
the proof of convergence of the nonlinear PHSS-like iteration method, which was
not addressed in the previous work. Numerical results also show the effectiveness of
his proposed method in [40]. We consider the special case of A with non-Hermitian
Toeplitz structure in this paper, and a Toeplitz matrix A has the so-called circulant
and skew-circulant splitting (CSCS) [25]. Inspired by the similar strategies of [34,
42], two kinds of CSCS-based iteration methods are established to solve AVEs (1.1)
efficiently. In the first, convergence conditions of the Picard-CSCS iteration method
will be investigated. Then we follow Zhang’s analytical techniques [40] to prove the
convergence condition of the nonlinear CSCS-like iteration method.
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The rest of this paper is organized as follows. In Section 2, we first introduce
several preliminary results about the nonsmooth analysis. Then we briefly review
the CSCS iteration method. In Section 3, we devote to introducing two CSCS-
based iteration methods for solving the AVEs (1.1) and investigate their conver-
gence properties, respectively. Numerical experiments are reported in Section 4 to
demonstrate the feasibility and effectiveness of our proposed CSCS-based iteration
methods. Finally, the paper closes with some conclusions in Section 5.

2. Preliminaries

In this section, similarly to [40], we review some notations and properties related
to the nonsmooth analysis, which are useful for discussing the convergence of the
proposed methods. Then we briefly recall the knowledge about the CSCS iteration
method for solving the non-Hermitian Toeplitz system of linear equations Ax = b.

2.1. Preliminary results

Let Ψ : Rn → Rn be a specified function, and let x be a given point in Rn. The
function Ψ is supposed to be locally Lipschitzian near x if there exist a scalar κ ∈ R
and δ > 0 such that, for all y, z ∈ Rn, ‖y − x‖ < δ, ‖z − x‖ < δ, the following
inequality holds:

‖Ψ(y)−Ψ(z)‖ < κ‖y − z‖.

Let Ψ : Rn → Rn be a locally Lipschitzian function. From Rademacher’s theo-
rem [12, pp. 18–23], it notes that Ψ is differentiable almost everywhere. Denote the
set of points at which Ψ is differentiable by DΨ. We write Ψ′(x) for the usual n×n
Jacobian matrix of partial derivatives whenever x is a point at which the neces-
sary partial derivatives exist. Then, the Bouligand subdifferential of Ψ at x ∈ Rn,
denoted by ∂BΨ(x), is as follows:

∂BΨ(x) :=
{

lim
k→∞

Ψ′(x)(x(k)) : x(k) ∈ DΨ,x
(k) → x

}
. (2.1)

Clarke’s generalized Jacobian [8, pp. 69-75] of Ψ at x is the convex hull of ∂BΨ(x),
i.e., ∂Ψ(x) = conv{∂BΨ(x)}. Since Ψ is a locally Lipschitzian function, so the
set ∂BΨ(x) and ∂Ψ(x) are bounded. By the definition, ∂BΨ(x) is also closed.
Therefore, ∂BΨ(x) and ∂Ψ(x) are compact.

Definition 2.1 ( [29]). Ψ is called semismooth at x, if Ψ is locally Lipschitzian
and for all h ∈ Rn with h 6= 0,

lim
h′→h,t↓0

{Eh′ : E ∈ ∂Ψ(x + th′)} (2.2)

exists. If Ψ is semismooth at all points in a given set, we can state that Ψ is
semismooth in this set.

If Ψ is semismooth at x, then Ψ must be directionally differentiable at x.

Proposition 2.1 ( [28,29]). Suppose that Ψ is semismooth at x. Then the classic
directional derivative

Ψ′(x;h) = lim
t↓0

Ψ(x + th)−Ψ(x)

t
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exists and is equal to the limit in (2.2).

Semismoothness was originally presented by Mifflin [21] for functionals, and then
Qi and Sun [29] generalized the concept to vector valued functions. It was proved
in [29, Corollary 2.4] that Ψ is semismooth at x if and only if all its component func-
tions are the same. The class of semismooth functionals is very broad; it includes
the smooth functions, all convex functions, and the piecewise-smooth functions.
Moreover, the sums, differences, products, and composites of semismooth functions
are still semismooth; refer, e.g., to [21,28,30] for details.

2.2. The CSCS iteration method

Here let A ∈ Cn×n be a non-Hermitian Toeplitz matrix of the following form

A =



a0 a−1 · · · a2−n a1−n

a1 a0 a−1 · · · a2−n
...

. . .
. . .

. . .
...

an−2 · · · a1 a0 a−1

an−1 an−2 · · · a1 a0


,

i.e., A is constant along its diagonals; refer to [24, 25], and B ∈ Cn×n be a zero
matrix, the general AVEs (1.2) reduced to the system of linear equations

Ax = b. (2.3)

It is well-known that a Toeplitz matrix A enjoys a circulant and skew-circulant
splitting [25], i.e., A = C + S, where

C =
1

2



a0 a−1 + an−1 · · · a2−n + a2 a1−n + a1

a1 + a1−n a0 · · · · · · a2−n + a2

...
. . .

. . .
. . .

...

an−2 + a−2 · · · · · · a0 a−1 + an−1

an−1 + a−1 an−2 + a−2 · · · a1 + a1−n a0


, (2.4)

and

S =
1

2



a0 a−1 − an−1 · · · a2−n − a2 a1−n − a1

a1 − a1−n a0 · · · · · · a2−n − a2

...
. . .

. . .
. . .

...

an−2 − a−2 · · · · · · a0 a−1 − an−1

an−1 − a−1 an−2 − a−2 · · · a1 − a1−n a0


. (2.5)

As we know, C is a circulant matrix, which can be diagonalized by the discrete
Fourier transform matrix F ; and S is a skew-circulant matrix, which can be diago-
nalized by a discrete Fourier transform matrix with diagonal scaling, i.e., F̂ = FΩ,
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where Ω = diag(1, e−
πι
n , . . . , e

−(n−1)πι
n ) and ι =

√
−1 is the imaginary unit. That is

to say, it holds that
FCFH = ΛC , F̂ SF̂H = ΛS , (2.6)

where

F = (F )j,k =
1√
n
e

2πι
n jk, 0 ≤ j, k ≤ n− 1

and ΛC , ΛS are two diagonal matrices formed by the eigenvalues of C and S,
respectively, which can be obtained in O(n log n) operations by using the FFTs [24,
pp. 37-39]. Furthermore, Ng [25] had established the following CSCS iteration
scheme to solve the non-Hermitian Toeplitz linear system (2.3).

Algorithm 1 The CSCS iteration method.
Given an initial guess x(0) ∈ Cn and compute x(k) for k = 0, 1, 2, . . ., using the
following iterative scheme until {x(k)}∞k=0 converges,{

(σI + C)x(k+ 1
2 ) = (σI − S)x(k) + b,

(σI + S)x(k+1) = (σI − C)x(k+ 1
2 ) + b,

where σ is a positive constant and I is the identity matrix of order n.
In the matrix-vector form, the CSCS iteration can be equivalently rewritten as

x(k+1) =M(σ)x(k) + G(σ)b

= (M(σ))k+1x(0) +

k∑
j=0

(M(σ))jG(σ)b, k = 0, 1, 2, . . . ,
(2.7)

where

M(σ) = (σI+S)−1(σI−C)(σI+C)−1(σI−S) and G(σ) = 2σ(σI+S)−1(σI+C)−1.

It is worth mentioning that the CSCS iteration is a stationary iterative method
obtained from the matrix splitting

A = B(σ)− C(σ),

where

B(σ) =
1

2σ
(σI + C)(σI + S) and C(σ) =

1

2σ
(σI − C)(σI − S).

On the other hand, we have

M(σ) = (B(σ))−1C(σ) and G(σ) = (B(σ))−1.

Here,M(σ) is the iterative matrix of the CSCS iteration method. We mention that
the CSCS iteration method is greatly similar to the HSS iteration method [2] and
its variants, see e.g. [3] and references therein.

When the circulant part C and the skew-circulant part S of A ∈ Cn×n are both
positive definite∗, Ng has proved that the spectral radius ρ(M(σ)) of M(σ) is less
than 1 for any parameters σ > 0, i.e., the CSCS iteration method unconditionally
converges to the exact solution of Ax = b for any initial guess x(0) ∈ Cn; refer
to [25, Theorem 1] for details.

∗It means that the real parts of all their eigenvalues are positive.
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3. Two CSCS-based iteration methods for AVEs

Motivated by the pioneer work of [34,42], we extend the conventional CSCS iteration
method to two types of CSCS-based iteration methods for solving AVEs (1.1). These
methods fully exploit the Toeplitz structure to accelerate the computation speed
and save storage. Next, we will devote to establishing these two new methods, i.e.,
the Picard-CSCS iteration method and the nonlinear CSCS-like iteration method.

3.1. The Picard-CSCS iteration method

Recalling that the Picard iteration method is a fixed-point iterative method and
the linear term Ax and the nonlinear term |x|+ b are separated [34,42], the AVEs
(1.1) can be solved by using the Picard iteration method

Ax(k+1) = |x(k)|+ b, k = 0, 1, 2, . . . . (3.1)

We assume that the non-Hermitian Toeplitz matrix A is positive definite. In this
case, the next iterate of x(k+1) can be approximately computed by the CSCS iter-
ation method with using A = B(σ)− C(σ) as the following scheme (see [41])

B(σ)x(k,`+1) = C(σ)x(k,`)+|x(k)|+b, ` = 0, 1, . . . , lk−1, k = 0, 1, 2, . . . , (3.2)

where B(σ) and C(σ) are the matrices defined in the previous section, σ is a positive
constant, {lk}∞k=0 is a prescribed sequence of positive integers, and x(k,0) = x(k) is
the starting point of the inner CSCS iteration at k-th outer Picard iteration. This
leads to the inexact Picard iteration method, called Picard-CSCS iteration method,
for solving AVEs (1.1) which can be summarized as follows, refer to [41].

Algorithm 2 The Picard-CSCS iteration method
Let A = C + S ∈ Cn×n be a non-Hermitian Toeplitz matrix; C and S are the
circulant and skew-circulant parts of A given in (2.4) and (2.5) and they are both
positive definite. Given an initial guess x(0) ∈ Cn and a sequence {lk}∞k=0 of positive
integers, compute x(k+1) for k = 0, 1, . . ., using the following iterative scheme until
{x(k)} satisfies the stopping criterion:

(a) Set x(k,0) = x(k);

(b) For ` = 0, 1, . . . , lk − 1, solve the following linear systems to obtain x(k,`+1):{
(σI + C)x(k,`+ 1

2 ) = (σI − S)x(k,`) + |x(k)|+ b,

(σI + S)x(k,`+1) = (σI − C)x(k,`+ 1
2 ) + |x(k)|+ b,

where σ is a given positive constant.

(c) Set x(k+1) := x(k,lk).

Numerical advantages of the Picard-CSCS iteration method are obvious. First,
the two linear subsystems in all inner CSCS iteration steps have the same shifted
circulant coefficient matrix σI + C and shifted skew-circulant coefficient matrix
σI + S, which are constant with respect to the iteration index k. Second, the
exact solutions can be efficiently obtained via FFTs in O(n log n) operations [9,25].
Hence, the computation cost of the Picard-CSCS iteration method could be much
cheaper than that of the Picard-HSS iteration method.

The next theorem suggests sufficient conditions for the convergence of the Picard-
CSCS iteration method for solving the AVEs (1.1).
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Theorem 3.1. Let A = C+S ∈ Cn×n be a non-Hermitian Toeplitz matrix; C and
S are the circulant and skew-circulant parts of A given in (2.4)-(2.5) and they are
both positive definite. Let also η = ‖A−1‖2 < 1. Then the AVE (1.1) has a unique
solution x∗, and for any initial guess x(0) ∈ Cn and any sequence of positive integers
{`k}, k = 0, 1, 2, . . ., the iteration sequence {x(k)}∞k=0 produced by the Picard-CSCS
iteration method converges to x∗ provided that l = lim inf

k→∞
lk ≥ N , where N is a

natural number satisfying∥∥∥(M(σ))s
∥∥∥

2
<

1− η
1 + η

, ∀s ≥ N.

Proof. Due to η < 1 and the conclusion of [18, Proposition 4], the system of AVEs
(1.1) has a unique solution x∗ ∈ Cn. As seen from Eq. (2.7), it found that the
(k + 1)-th iterate of the Picard-CSCS iteration can be written as

x(k+1) = (M(σ))lkx(k) +

lk−1∑
j=0

(M(σ))jG(σ)(|x(k)|+ b), k = 0, 1, 2, . . . . (3.3)

On the other side, since x∗ is the solution of AVEs (1.1), it follows

x∗ = (M(σ))lkx∗ +

lk−1∑
j=0

(M(σ))jG(σ)(|x∗|+ b), k = 0, 1, 2, . . . . (3.4)

To subtract (3.4) from (3.3) yields

x(k+1) − x∗ = (M(σ))lk(x(k) − x∗) +

lk−1∑
j=0

(M(σ))jG(σ)(|x(k)| − |x∗|). (3.5)

Furthermore, since ρ(M(σ)) < 1, we obtain

lk−1∑
j=0

(M(σ))jG(σ) = (I − (M(σ))lk)(I −M(σ))−1G(σ)

= (I − (M(σ))lk)(I − (B(σ))−1C(σ))−1(B(σ))−1

= (I − (M(σ))lk)A−1.

Substituting the above identity in Eq. (3.5) yields

x(k+1) − x∗ = (M(σ))lk(x(k) − x∗) + (I − (M(σ))lk)A−1(|x(k)| − |x∗|)

= (M(σ))lk
[
(x(k) − x∗)−A−1(|x(k)| − |x∗|)

]
+A−1(|x(k)| − |x∗|).

Now, we can obtain

‖x(k+1) − x∗‖2 ≤
(
‖(M(σ))lk‖2(1 + η) + η

)
‖x(k) − x∗‖2.

Here, the above inequality is true due to the fact that for any x,y ∈ Cn, it follows
‖|x| − |y|‖2 ≤ ‖x − y‖2. Since ρ(M(σ)) < 1, then lim

s→∞
(M(σ))s = 0. Thus, there

exists a natural number N such that

‖(M(σ))s‖2 <
1− η
1 + η

, ∀s ≥ N.
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At the stage, if we suppose that l = lim inf
k→∞

lk ≥ N , then the targeted result is

immediately completed.

3.2. The nonlinear CSCS-like iteration method

In the Picard-CSCS iteration method, the numbers lk, k = 0, 1, 2, . . . of the inner
CSCS iteration steps are often problem-dependent and difficult to be determined in
actual computations [34,41,42]. Moreover, the iterative vector can not be updated
timely. Thus, to avoid the defection and still preserve the advantages of the Picard-
CSCS iteration method, based on the nonlinear fixed-point equations

(σI + C)x = (σI − S)x + |x|+ b, and (σI + S)x = (σI − C)x + |x|+ b,

we propose the following nonlinear CSCS-like iteration method.

Algorithm 3 The nonlinear CSCS-like iteration method
Let A = C + S ∈ Cn×n be a non-Hermitian Toeplitz matrix; C and S are the
circulant and skew-circulant parts of A given in (2.4) and (2.5) and they are both
positive definite. Choose an initial guess x(0) ∈ Cn and compute x(k+1) for k =
0, 1, 2, . . ., using the following iteration scheme until {x(k)} satisfies the stopping
criterion: {

(σI + C)x(k+ 1
2 ) = (σI − S)x(k) + |x(k)|+ b,

(σI + S)x(k+1) = (σI − C)x(k+ 1
2 ) + |x(k+ 1

2 )|+ b,
(3.6)

where σ is a given positive constant.
Define {

U(x) = (σI + C)−1[(σI − S)x + |x|+ b],

V(x) = (σI + S)−1[(σI − C)x + |x|+ b],
(3.7)

and
Θ(x) = V ◦ U(x) := V(U(x)). (3.8)

Then the nonlinear CSCS-like iterative scheme can be equivalently expressed as

x(k+1) = Θ(x(k)), k = 0, 1, 2, . . . . (3.9)

The Ostrowski theorem, i.e., Theorem 10.1.3 in [26, pp. 300–301], provides a
local convergence theory about a one-step stationary nonlinear iteration. Based on
this item, Zhu and Zhang established the local convergence theory for the nonlinear
CSCS-like iteration method in [41]. However, these convergence theory has a strict
requirement that f(x) = |x| + b is F-differentiable at a point x∗ ∈ D (where we
define f : D ⊂ Cn → Cn) such that Ax∗ − |x∗| = b. Obviously, the absolute value
function |x| is non-differentiable. In order to remedy the difficulty, Zhu, Zhang and
Liang [42] attempt to introduce a smoothing approximation function [38]

ϕ(x) =
1

µ
ln
(

exp
(x
µ

)
+ exp

(−x
µ

))
, x ∈ Cn and µ > 0

for |x|, then they present the convergence of the nonlinear HSS-like iteration method
based on the convergence of the iteration scheme{

(σI + C)x(k+ 1
2 ) = (σI − S)x(k) + ϕ(x(k)) + b,

(σI + S)x(k+1) = (σI − C)x(k+ 1
2 ) + ϕ(x(k+ 1

2 )) + b,
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and their convergence result is deeply dependent on the smoothing approximate
function ϕ(x) of |x|, nor |x| itself. Recently, Zhang [40] exploit the theory of nons-
mooth analysis to introduce a framework to prove the convergence of his proposed
relaxed nonlinear HSS-like iteration method completely. Inspired by Zhang’s frame-
work, we will similarly analyze the (local) convergence of the nonlinear CSCS-like
iteration method in the next context. Firstly, the following definition in [26, pp.
299–300] needs to be cited here.

Definition 3.1. Let Θ : D ⊂ Rn → Rn. Then x∗ is a point of attraction of the
iteration (3.9), if there is an open neighborhood S of the point x∗ such that S ⊂ D
and, for any x(0) ∈ S, the iterates {x(k)} all lie in D and converge to x∗.

Based on the above definition, we can obtain the following proposition, which is
useful for studying the convergence of the nonlinear CSCS-like iteration method.

Proposition 3.1 ( [40]). Suppose that Θ : Rn → Rn has a fixed-point x∗ ∈ Rn
and is semismooth at x∗. If for all E ∈ ∂BΘ(x∗), we have ρ(E) < 1, where ρ(E)
denotes the spectral radius of E. Then x∗ is a point of attraction of the iteration
scheme (3.9).

From statements in [40], let x∗ satisfy Ax∗ − |x∗| = b. We compute the Bouli-
gand subdifferential of Θ(x) defined by (3.8)-(3.9) at x∗. Due to the special form
of V and U , it is easy to verify that, x∗ = U(x∗), x∗ = V(x∗), and x∗ = Θ(x∗).
Observe the special form of Θ, we have that

∂BΘ(x∗) = { lim
k→∞

Θ′(x(k)) : x(k) ∈ DΘ, x
(k) → x∗}

=
{

lim
k→∞

V ′(y(k))U ′(x(k)) : x(k) ∈ DU , y(k) = U(x(k)) ∈ DV , x(k) → x∗
}

⊂
{

lim
y(k)→x∗

V ′(y(k)) : y(k) ∈ DV
}{

lim
x(k)k→x∗

U ′(x(k)) : x(k) ∈ DU
}

⊂ ∂BV(x∗)∂BU(x∗),

where

∂BV(x∗)∂BU(x∗) := {W : W = EF1, E ∈ ∂BV(x∗), F1 ∈ ∂BU(x∗)}.

Using the above discussion and Proposition 3.1, it immediately obtains the fol-
lowing conclusion about the convergence of the nonlinear CSCS-like iteration solver.

Theorem 3.2. Let the point x∗ satisfy Ax∗ = |x∗| + b. Suppose that C and S
are the circulant and skew-circulant parts of the Toeplitz matrix A = C + S given
in (2.4) and (2.5). Moreover, C and S are both positive definite matrices, and
F1, F̃1 ∈ ∂B |x∗|. Denote by

M(σ;F1, F̃1) = T1(σ;F1)T2(σ; F̃1),

where
T1(σ;F1) = (σI + S)−1[(σI − C) + F1],

T2(σ; F̃1) = (σI + C)−1[(σI − S) + F̃1].

If for all F1, F̃1 ∈ ∂B |x∗|, ρ(M(σ;F1, F̃1)) < 1, then x∗ is a point of attraction of
the nonlinear CSCS-like iteration method.
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Proof. It is clear that U and V are semismooth, so Θ is semismooth. Let E ∈
∂B |x∗|, then it is not hard to find that E is a diagonal matrix. Assume

E = diag(E11, E22, . . . , Enn),

we have Eii = 1, if x∗i > 0; Eii = −1, if x∗i < 0, and Eii ∈ {1,−1}, if x∗i = 0.
If W ∈ ∂BV(x∗), then W = (σI + S)−1[(σI − C) + F1], where F1 ∈ ∂B |x∗|. If
W̃ ∈ ∂BU(x∗), then W̃ = (σI + C)−1[(σI − S) + F̃1], where F̃1 ∈ ∂B |x∗|. Since
∂BΘ(x∗) ⊂ ∂BV(x∗)∂BU(x∗), if for all F1, F̃1 ∈ ∂B |x∗|, ρ(M(σ;F1, F̃1)) < 1, then
for all W ∈ ∂BΘ(x∗), we have ρ(W ) < 1. This can complete the desired proof.

Corollary 3.1. Let the point x∗ satisfies Ax∗ = |x∗| + b. Suppose that C and S
are the circulant and skew-circulant parts of the Toeplitz matrix A = C + S given
in (2.4) and (2.5). Moreover, C and S both are positive definite matrices, and
F1, F̃1 ∈ ∂B |x∗|. Denote by

t1(σ) = ‖(σI + S)−1(σI − C)‖,

t2(σ) = ‖(σI + C)−1(σI − S)‖,

and
δ = max{‖(σI + C)−1F̃1‖, ‖(σI + S)−1F1||}.

If t1(σ)t2(σ) < 1 and for all F1, F̃1 ∈ ∂B |x∗|,

δ <
2− 2t1(σ)t2(σ)√

(t1(σ)− t2(σ))2 + 4 + (t1(σ) + t2(σ))
, (3.10)

then x∗ is a point of attraction of the nonlinear CSCS-like iteration method.

Proof. By simple calculations we obtain

M(σ;F1, F̃1) = (σI + S)−1[(σI − C) + F1](σI + C)−1[(σI − S) + F̃1]

= (σI + S)−1(σI − C)(σI + C)−1(σI − S) + (σI + S)−1(σI − C)(σI

+ C)−1F̃1 + (σI + S)−1F1(σI + C)−1(σI − S)

+ (σI + S)−1F1(σI + C)−1F̃1.

Hence,

‖M(σ;F1, F̃1)‖ ≤ ‖(σI + S)−1(σI − C)‖‖(σI + C)−1(σI − S)‖+ ‖(σI + S)−1(σI

− C)‖ · ‖(σI + C)−1F̃1‖+ ‖(σI + S)−1F1‖‖(σI + C)−1(σI−
S)‖+ ‖(σI + S)−1F1‖‖(σI + C)−1F̃1‖

≤ t1(σ)t2(σ) + δ(t1(σ) + t2(σ)) + δ2.

With the help of the condition (3.10), we obtain

t1(σ)t2(σ) + δ(t1(σ) + t2(σ)) + δ2 < 1.

Therefore, we have

ρ(M(σ;F1, F̃1)) ≤ ‖M(σ;F1, F̃1)‖ < 1,
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which follows the desired result by using Theorem 3.2.

Remark. An attractive feature of the nonlinear CSCS-like iteration method is that
it avoids the use of the differentiable in actual iterative scheme. Although we present
our convergence analysis of the nonlinear CSCS-like iteration method under real
matrices and vectors, the condition is not necessary in the actual implementation
corresponding to numerical experiments of the next section.

4. Numerical results

In this section, numerical performances of the Picard-CSCS and the nonlinear
CSCS-like iterative solvers are investigated and compared experimentally by a suit
of test problems. All the tests are performed in MATLAB R2014a (64bit) on In-
tel(R) Core(TM) i5-3470 CPU @ 3.2 GHz and 8.00 GB of RAM, with machine
precision 10−16, and terminated when the current residual satisfies

‖Ax(k) − |x(k)| − b‖2
‖b‖2

< 10−7,

where x(k) is the computed solution by each of the methods at iteration step k, and
a maximum number of the iterations 200 is used.

Morover, the stopping criterion for the inner iterations of the Picard-CSCS it-
erative method is

‖b(k) −Ax(k,lk)‖2
‖b(k)‖2

≤ ηk,

where lk is the number of the inner iteration steps and ηk is the prescribed tolerance
for controlling the accuracy of the inner iterations at the k-th outer iteration step.
If ηk is fixed for all k, then it is simply denoted by η̃.

In our numerical experiments, we use the zero vector as the initial guess, the
accuracy of the inner iterations ηk for both Picard-CSCS and Picard-HSS iterative
methods is fixed and set to be η̃ = 0.01, a maximum number of iterations 15
(lk = 15, k = 0, 1, 2, . . . ,) for inner iterations, and the right-hand side vector b of
the AVEs (1.1) is taken in such a way that the vector x∗ = (x1, x2, . . . , xn)H with

xk = (−1)kι, k = 1, 2, . . . , n (4.1)

is the exact solution. The two sub-systems of linear equations involved are solved
in the way if Ax∗ = b, then x∗ = A−1b. Moreover, if the two sub-systems of
linear equations involved in the Picard-CSCS and the nonlinear CSCS-like iteration
methods are solved by exploiting the method introduced in [9] and using parallel
computing, numerical performances of the Picard-CSCS and the nonlinear CSCS-
like iteration methods should become better.

On the other hand, Mangasarian modified the classical Newton iteration method
for solving AVEs by introducing the auxiliary diagonal matrix D̂(x) = ∂|x| =
diag(sign(x)), refer to [20] for details; then he established the generalized Newton
iterative scheme with the initial guess x(0),

x(k+1) = (A− D̂(x(k)))−1b, (4.2)

so it notes that we need to solve a system of linear equations with the coefficient
matrix J (k) = A − D̂(x(k)), i.e., Eq. (4.2). If the matrix J (k) = A − D̂(x(k)) is
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very sparse, then Eq. (4.2) can be solved by using MATLAB’s function “\”. If
the matrix J (k) = A − D̂(x(k)) is large-scale (even dense), the Eq. (4.2) can be
solved by using Krylov subspace methods, such as GMRES [35] and TFQMR [10].
This consideration just follows the recent method named the inexact semi-smooth
Newton method, which has been introduced in [1]. In our numerical experiments,
we also give the compared results between the proposed method and the above
generalized Newton iterative scheme.

In practical implementations, the optimal parameter σHSS =
√
λmaxλmin rec-

ommended in [2] is employed for the Picard-HSS and nonlinear HSS-like iteration
methods, where λmin and λmax are the minimum and the maximum eigenvalues of
the Hermitian part H of the matrix A. Similarly, we adopt the optimal parameter
σCSCS given in [25, 31] for the Picard-CSCS iteration method and the nonlinear
CSCS-like iteration method. More precisely, in our calculations, σCSCS is chosen
according to the following formula

σCSCS =

{√
γminγmax − ζ2

max, for ζmax <
√
γminγmax,√

γ2
min + ζ2

max, for ζmax ≥
√
γminγmax,

where γmin and γmax are the lower and the upper bounds of the real part of the
eigenvalues of the matrices C and S, and ζmax is the upper bound of the absolute
values of the imaginary part of the eigenvalues of the matrices C and S. Meanwhile,
it should mention that two optimal parameters σHSS and σCSCS only minimize the
bounds of the convergence factors (not the spectral radiuses selves) of the HSS and
CSCS iteration matrices, respectively [41]. Admittedly, the optimal parameters are
crucial for guaranteeing fast convergence of these parameter-dependent iteration
methods, but they are generally difficult to be determined, see e.g. [2, 5, 34, 41] for
a discussion of these issues.

To show that the proposed iteration methods can also be efficiently applied to
deal with the complex system of AVEs (1.1), we first construct and test the following
example, which is a system of AVEs with complex Toeplitz matrix.

Example 4.1. We consider that A ∈ Cn×n is a complex non-Hermitian, sparse
and positive definite Toeplitz matrix with the following form

A =



γ cι dι

−1− cι γ cι dι

−1− dι −1− cι γ cι dι

. . .
. . .

. . .
. . .

. . .

−1− dι −1− cι γ cι dι

−1− dι −1− cι γ cι

−1− dι −1− cι γ


, (4.3)

where ι =
√
−1 and c, d, γ ∈ R are three given parameters. It means that the

matrices A in the targeted AVEs are defined as Eq. (4.3). According to the perfor-
mances of HSS-based methods, see [34,40,42], compared with other early established
methods, we compare the proposed CSCS-based methods with HSS-based method-
s in Example 4.1. Then we choose different parameters c and d and present the
corresponding numerical results in Tables 2-3.
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Table 1. The optimal parameters σ∗opt for Example 4.1.

γ (c, d) σ∗opt n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096

10 (2, 3) σHSS 2.9710 2.9524 2.9477 2.9465 2.9462 2.9461
σCSCS 1.1817 1.1818 1.1813 1.1813 1.1813 1.1813

13.5 (3, 4) σHSS 3.6871 3.6595 3.6525 3.6507 3.6503 3.6502
σCSCS 1.6008 1.5997 1.5989 1.5989 1.5988 1.5989

Table 2. Numerical results for Example 4.1 with order n, γ = 10, and (c, d) = (2, 3).

Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
Picard-HSS IT out 6 6 6 6 5 5

IT inn 9.8333 9.8333 9.5000 9.5000 9.2000 9.2000
IT 59 59 57 57 46 46
CPU 0.0158 0.0215 0.0243 0.0338 0.0511 0.1044

Picard-CSCS IT out 6 6 6 6 6 5
IT inn 6.3333 6.3333 6.0000 6.0000 6.0000 5.6000
IT 38 38 36 36 36 28
CPU 0.0112 0.0146 0.0189 0.0258 0.0431 0.0546

HSS-like IT 37 36 35 34 33 31
CPU 0.0136 0.0173 0.0218 0.0275 0.0531 0.1013

CSCS-like IT 24 23 22 22 21 21
CPU 0.0072 0.0097 0.0131 0.0215 0.0276 0.0514

GN IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –

Table 3. Numerical results for Example 4.1 with order n, γ = 13.5, and (c, d) = (3, 4).

Method n = 128 n = 256 n = 512 n = 1024 n = 2048 n = 4096
Picard-HSS IT out 5 5 5 5 5 5

IT inn 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000
IT 50 50 50 50 50 50
CPU 0.0129 0.0161 0.0206 0.0298 0.0544 0.1135

Picard-CSCS IT out 5 5 5 5 5 5
IT inn 6.2000 6.0000 6.0000 6.0000 5.8000 5.8000
IT 31 30 30 30 29 29
CPU 0.0098 0.0123 0.0166 0.0248 0.0332 0.0581

HSS-like IT 41 40 39 38 37 36
CPU 0.0121 0.0174 0.0192 0.0306 0.0587 0.1131

CSCS-like IT 24 23 23 22 21 21
CPU 0.0075 0.0093 0.0136 0.0212 0.0289 0.0496

GN IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –

Firstly, the optimal parameters σCSCS and σHSS for Example 4.1 are listed in
Table 1. It is worth mentioning that with the increase of the matrix dimension
n, the optimal parameters σCSCS and σHSS are almost fixed or decreasing slightly.
Moreover, in Tables 2-3, we report numerical results with respect to the Picard-
HSS, the nonlinear HSS-like, the Picard-CSCS, the nonlinear CSCS-like iterations,
and the generalized Newton iterations using the MATLAB’s function “\” (referred
to as GN). We also present the elapsed CPU time in seconds (denoted as CPU) and
the number of outer, inner and total iteration steps (outer and inner iterations only
for both Picard-HSS and Picard-CSCS) for the convergence performances (denoted
as IT out, IT inn and IT, respectively).



CSCS-based iteration methods for AVEs 1349

As seen from Tables 2-3, it finds that except the GN method, the Picard-HSS, the
nonlinear HSS-like, the Picard-CSCS and the nonlinear CSCS-like iterative meth-
ods can successfully achieve approximate solutions of the AVEs with all different
matrix dimensions. When the dimension n is increasing, the number of outer and
inner iteration steps are almost fixed for all iteration methods, and the number of
total iteration steps shows the similar phenomena. But the total CPU time for
all iteration methods are increasing quickly. Moreover, in terms of outer iteration
steps, the Picard-HSS iteration method and the Picard-CSCS iteration method have
almost the same results, but the Picard-CSCS iteration method is better than the
Picard-HSS iteration method in terms of inner iteration steps. Then as a result,
the Picard-CSCS iteration method is also more competitive than the Picard-HSS
iteration method in aspects of the elapsed CPU time.
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Figure 1. Convergence histories of the different iterative methods for two systems of AVEs with the
size n = 512 in Example 4.1.

On the other hand, from Tables 2-3, we also observe that both the nonlinear
CSCS-like and the Picard-CSCS iteration methods are better than the nonlinear
HSS-like and the Picard-HSS iteration methods in terms of the number of itera-
tion steps and the elapsed CPU time for solving AVEs. In particular, the nonlin-
ear CSCS-like method often enjoys the better performance than the Picard-CSCS
method in our implementations. Moreover, the convergence histories of residual
2-norms of these four different iterative algorithms are displayed in Fig. 1, and the
performance profile based on CPU time for Example 4.1 with increasing the ma-
trix size n is illustrated in Fig. 2. In conclusion, the nonlinear CSCS-like iteration
method is the best choice for coping with AVEs concerning in Example 4.1. Besides,
the Picard-CSCS iteration method can be regarded as an acceptable alternative.

Example 4.2. In order to evaluate the performances of the propose methods com-
prehensively, we consider a family of the practical problems about the AVEs arising
in numerical solutions of the following one-dimensional nonlinear space fractional



1350 X. Gu, T. Huang, H. Li, et al

102 103 104

Matrix size: n

0

0.02

0.04

0.06

0.08

0.1

0.12

th
e
 e

la
p
se

d
 C

P
U

 t
im

e
: 
C

P
U

Picard-HSS
Picard-CSCS
HSS-like
CSCS-like

102 103 104

Matrix size: n

0

0.02

0.04

0.06

0.08

0.1

0.12

th
e

 e
la

p
s
e

d
 C

P
U

 t
im

e
: 

C
P

U

Picard-HSS
Picard-CSCS
HSS-like
CSCS-like

Figure 2. Performance profile based on CPU time under the matrix size n in Example 4.1.

diffusion equation, which is specially modified from Refs. [6, 22],
∂u(x, t)

∂t
= d+

∂αu(x, t)

∂+xα
+ d−

∂αu(x, t)

∂−xα
+ |u(x, t)|/ς, x ∈ (0, 1), t ∈ [0, 1],

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1,

u(x, 0) = φ(x), 0 ≤ x ≤ 1,

(4.4)
where α ∈ (1, 2) is the order of the fractional derivative, ς > 0, and diffusion
coefficients d± are nonnegative; i.e., d± ≥ 0. Moreover, φ(x) is a known function.
To solve Eq. (4.4) numerically, let N and M be positive integers, and h = 1/(N+1)
and τ = 1/M be the sizes of spatial grid and time step, respectively. We define a
spatial and temporal partition xj = jh for j = 0, 1, . . . , N + 1 and tm = mτ for

m = 0, 1, . . . ,M . Let u
(m)
j = u(xj , tm). In [22], Meerschaert and Tadjeran proposed

the shifted Grünwald approximation as follows,

∂αu(xj , tm)

∂+xα
=

1

hα

j+1∑
k=0

g
(α)
k u

(m)
j−k+1 +O(h), (4.5a)

∂αu(xj , tm)

∂−xα
=

1

hα

N−j+2∑
k=0

g
(α)
k u

(m)
j+k−1 +O(h), (4.5b)

where the coefficients g
(α)
k and corresponding properties are given in [14,22, Propo-

sition 1]. Combining the implicit Euler scheme with Eqs. (4.5) to discrete Eq. (4.4),
then the final numerical scheme is

u
(m)
j − u(m−1)

j

τ
=
d+

hα

j+1∑
k=0

g
(α)
k u

(m)
j−k+1 +

d−
hα

N−j+2∑
k=0

g
(α)
k u

(m)
j+k−1 + |u(m)

j |/ς. (4.6)

By using the similar ways given in [6], it is not difficult to prove that the numerical
scheme (4.6) is unconditionally stable, which we will not pursue here. Let u(m) =
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(u
(m)
1 , u

(m)
2 , . . . , u

(m)
N )T , m = 0, 1, . . . ,M and IN be the identity matrix of order N .

Then the numerical scheme (4.6) at the first temporal level m = 1 can be written
in the following matrix form[

IN −
τ

hα
(d+Gα + d−G

T
α)
]
u(1) − |u(1)| = u(0), (4.7)

where we take ς = τ and Gα ∈ RN×N is a nonsymmetric Toeplitz matrix defined
in [14]. According to Eq. (4.6), it implies that we need to handle a system of
nonlinear equations like the AVEs in (1.1) at each time step, i.e., there is a need for
solving the AVEs with the form Au−|u| = u(0), where A = IN− τ

hα (d+Gα+d−G
T
α)

is also a nonsymmetric Toeplitz matrix. Meanwhile, for simplicity, the vector u(0)

is still chosen as the same as that x∗ in Eq. (4.1) is the solution of AVEs in (1.1).
Next, for the first temporal level m = 1, we employ these two CSCS-based

iteration methods to solve the above resultant AVEs, then the necessary condition
for analyzing the convergence of the CSCS-based iteration method is that both the
circulant part C and the skew-circulant part S of A are positive definite. In fact, we
have already mentioned that both the circulant part C and the skew-circulant part
S of the matrix A = IN− τ

hα (d+Gα+d−G
T
α) are positive definite (see [11] for details)

via the similarly analyzed methods in [31]. It means that exploiting the CSCS-based
iteration methods for solving the resulting AVEs is reasonable. At the same time, it
is worth mentioning that HSS-based iteration methods are not suitable for Example
4.2 due to the Toeplitz coefficient matrix. Otherwise, it will lead to the complicated
computations for solving two sub-systems with the dense coefficient matrices σI+H
and σI+S. In this example, since the matrix J (k) is a Toeplitz-plus-diagnoal matrix,
so there are no fast direct solvers for J (k)x̃ = u(0)†. Fortunately, it should note
that the matrix-vector product involving J (k) can be implemented via FFTs due
to having the Toeplitz part A. It tells us that the Krylov subspace methods can
be compatibly exploited for solving J (k)x̃ = u(0) at each iteration step, we denote
them as the GN-TFQMR method and the GN-GMRES method. In conclusion,
we will compared the proposed CSCS-based iteration method with both the GN-
GMRES and GN-TFQMR methods for solving the resultant AVEs in Example 4.2.
Numerical results are reported in the following tables under different values of α, d±
and h = τ . The total number of (inner) iteration steps used for both GMRES and
TFQMR methods, which are used to solve J (k)x̃ = u(0), is no more than 15 in our
practical implementations.

Table 4. The optimal parameters σ∗opt of the CSCS iteration method in Example 4.2.

α (d+, d−) σ∗opt

N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096
1.2 (0.5, 0.8) 1.4499 1.5338 1.6233 1.7180 1.8175 1.9216
1.5 (0.6, 0.4) 2.7848 3.2426 3.7564 4.3094 4.8598 5.3131
1.8 (0.7, 0.3) 5.8492 6.9416 7.0941 15.3896 26.7749 46.6033

First of all, the optimal parameters σCSCS for Example 4.2 are listed in Table
4. It is remarked that with the increase of the matrix dimension n, the optimal

†It is mainly because the displacement rank of the matrix J(k) can take any value between 0
and n. Hence, fast Toeplitz direct solvers that are based on small displacement rank of matrices
cannot be applied [24, p.142].



1352 X. Gu, T. Huang, H. Li, et al

parameters σCSCS are almost fixed or increasing slightly for the cases of α = 1.2 and
α = 1.5. Since the case of α = 1.8 corresponding to the coefficient matrix A is very
ill-conditioned, so the optimal parameters σCSCS are varied intensely. Moreover,
in Tables 5-7, we report the numerical results with respect to the Picard-CSCS,
nonlinear CSCS-like, GN-GMRES and GN-TFQMR iterative methods. Similar to
Example 4.1, we report the elapsed CPU time in seconds and the number of outer,
inner and total iteration steps (outer and inner iterations only for Picard-CSCS,
GN-GMRES and GN-TFQMR) for showing the convergence performances.

Table 5. Numerical results for Example 4.2 with order N , α = 1.2, and (c, d) = (0.5, 0.8).

Method N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096
Picard-CSCS IT out 6 6 6 6 6 6

IT inn 4.0000 4.0000 4.0000 4.1667 5.0000 5.0000
IT 24 24 24 25 30 30
CPU 0.0077 0.0098 0.0136 0.01998 0.0331 0.0585

CSCS-like IT 12 13 14 15 16 18
CPU 0.0032 0.0051 0.0078 0.0099 0.01776 0.0334

GN-GMRES IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –
GN-TFQMR IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –

Table 6. Numerical results for Example 4.2 with order N , α = 1.5, and (d+, d−) = (0.6, 0.4).

Method N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096
Picard-CSCS IT out 6 6 6 6 6 6

IT inn 7.0000 8.1667 9.1667 10.6667 13.0000 14.3333
IT 42 49 55 64 78 86
CPU 0.0161 0.0189 0.0234 0.0335 0.0609 0.1307

CSCS-like IT 24 29 35 43 54 69
CPU 0.0063 0.0084 0.0119 0.0218 0.0486 0.1133

GN-GMRES IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –
GN-TFQMR IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –

Based on numerical results in Tables 5-7, it finds that these two iterative solvers,
i.e., the Picard-CSCS and the nonlinear CSCS-like, can successfully obtain approx-
imate solutions to the AVEs for all different matrix dimensions; whereas both the
GN-GMRES and GN-TFQMR iterative methods fully fail to converge. It is mainly
because the Newton-like iterative methods are usually sensitive to the initial guess
and the accuracy of solving the inner linear system corresponding to (4.2) per itera-
tive step. When the matrix dimension N is increasing, the number of outer iteration
steps are almost fixed or increasing slightly for all iteration methods, whereas the
number of inner iteration steps show the contrary phenomena for the cases with
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Table 7. Numerical results for Example 4.2 with order N , α = 1.8, and (d+, d−) = (0.7, 0.3).

Method N = 128 N = 256 N = 512 N = 1024 N = 2048 N = 4096
Picard-CSCS IT out 5 6 10 8 9 13

IT inn 14.4000 15.0000 15.0000 15.0000 15.0000 15.0000
IT 72 90 150 120 135 195
CPU 0.0185 0.0252 0.0415 0.0505 0.0987 0.2817

CSCS-like IT 59 86 146 117 117 118
CPU 0.0101 0.0179 0.0386 0.0517 0.1007 0.1911

GN-GMRES IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –
GN-TFQMR IT out max max max max max max

IT inn – – – – – –
IT Fail Fail Fail Fail Fail Fail

CPU – – – – – –

α = 1.2 and α = 1.5. Meanwhile, the total CPU time and the total iteration steps
for both the Picard-CSCS and the nonlinear CSCS-like iteration methods are in-
creasing quickly except the cases of α = 1.8 with N = 1024 and N = 2048. On the
other hand, from Tables 5-7, we also observe that the nonlinear CSCS-like method
is almost more competitive than the Picard-CSCS iteration method in terms of the
number of iterations and the elapsed CPU time for solving the AVEs. In particu-
lar, we can find that the nonlinear CSCS-like iteration method can require slightly
less number of iterations to converge than the Picard-CSCS iterative solver, but
the Picard-CSCS iterative solver can save a little elapsed CPU time with compared
to the nonlinear CSCS-like iteration method in our implementations. However, it
still concludes that the nonlinear CSCS-like iterative method is the first choice for
solving the AVEs concerning in Example 4.2. At the same time, the Picard-CSCS
iteration method can be considered as a possible alternative.

5. Conclusions

In this paper, we have constructed two CSCS-based iteration methods for solv-
ing AVEs (1.1) with non-Hermitian Toeplitz matrix. Two CSCS-based iteration
methods are based on separable property of the linear term Ax and the nonlinear
term |x|+ b as well as on the CSCS of the involved non-Hermitian positive definite
Toeplitz matrix A. By leveraging the theory of nonsmooth analysis, the local con-
vergence of nonlinear CSCS-like iteration method has been investigated. Further
numerical experiments have shown that the Picard-CSCS and nonlinear CSCS-like
iteration methods are feasible and efficient nonlinear solvers for the AVEs. In par-
ticular, the nonlinear CSCS-like iteration method often does better than the Picard-
CSCS iteration method for solving the AVEs. Finally, it is worth mentioning that
how to employ suitable acceleration techniques [3,37,40] for enhancing the conver-
gence of CSCS-based iteration methods, which are affiliated with the fixed-point
iteration, can remain an interesting topic of further research.
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