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REDUCED MULTISCALE COMPUTATION ON
ADAPTED GRID FOR THE

CONVECTION-DIFFUSION ROBIN
PROBLEM∗

Shan Jiang1,2,†, Meiling Sun3 and Yin Yang4

Abstract We propose a reduced multiscale finite element method for a convection-
diffusion problem with a Robin boundary condition. The small perturbed pa-
rameter would cause boundary layer oscillations, so we apply several adapted
grids to recover this defect. For a Robin boundary relating to derivatives, spe-
cial interpolating strategies are presented for effective approximation in the
FEM and MsFEM schemes, respectively. In the multiscale computation, the
multiscale basis functions can capture the local boundary layer oscillation, and
with the help of the reduced mapping matrix we may acquire better accura-
cy and stability with a less computational cost. Numerical experiments are
provided to show the convergence and efficiency.
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1. Introduction

Singularly perturbed problems arise in many scientific fields, such as elastic me-
chanics, fluid mechanics, molecular dynamics, optimal control, etc. Small singular
parameters ε would lead to boundary layer, rapid oscillation or other troublesome
behaviors. Traditional numerical methods, such as the finite element method (FEM)
or the finite difference method (FDM) is so costly that sufficiently fine discretization-
s would cause prohibitively challenging systems for solving. Now there is a strong
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trend in addressing efficient methods for singular perturbations (see [17,20]).

In decades, multiscale methods are hot spots in recent researches and have a
great deal of applications. From a macroscopical point of view, it has an advantage
of small computational cost but is hard to reflect the overall microscopic mechanism.
On the other hand, from a microscopic point of view, even though it captures tiny
process, applying a totally microscopic technology is irrational or even impossible
because of computer limitation. In a way, multiscale computations emerge because
of a great demand. They are focused on finding a reasonable balance between
accuracy and cost, and can be integrated with the singular perturbation (see [14,
15,18]).

Among these studies, the multicale finite element method (MsFEM) is one of
the popular techniques. It obtains a large scale solution accurately and efficiently by
constructing the multiscale basis functions; these bases can be achieved by solving
a local problem in coarse elements. E et al. [4] give a systematic review of the het-
erogeneous multiscale method (HMM), including its designing philosophy and error
analysis. In [5] Efendiev, Galvis, and Hou present a generalized multiscale finite el-
ement method (GMsFEM), which is to apply the MsFEM with spectral multiscale
basis functions by using eigenvectors of local eigenvalue problems, and construc-
t the offline and online spaces for more general problems. An adaptive reduced
basis finite element heterogeneous multiscale method (RB-FE-HMM) is provided
for elliptic problems with multiple scales in [1], and then an adaptive multiscale
finite element method is developed in [7]. In [23] we apply an enriched MsFEM to
solve the two dimensional singularly perturbed reaction-diffusion problem, and the
multiscale basis functions are combined with a modified version of graded meshes
for accuracy and efficiency. Efendiev et al. [6] design a multiscale model reduction
framework within the hybridizable discontinuous Galerkin (HDG) finite element
method. A residual-driven online generalized multiscale finite element method is
studied in [3]. Hou and Liu [8] consider special harmonic multiscale basis functions
with an optimal approximation property for fixed local boundary conditions, and
achieve proper simulations through the singular value decompositions of some over-
sampling operators. Song, Deng, and Wu [22] construct a combined finite element
and over-sampling multiscale Petrov-Galerkin method (FE-OMsPGM) to solve the
multiscale problems which may have singularities in some special portions, and use
much less degree of freedoms than the FEM, which may be more accurate than
the OMsPGM. Jiang, Presho, and Huang [13] propose an adapted PG-MsFEM to
effectively solve the singularly perturbed reaction-diffusion problem, and reduce the
boundary layer errors on the exponential layer adapted meshes; it could eliminate
the cell resonance effect automatically to improve the convergence rate. In addition,
there are plenty of multiscale and singular perturbation works, such as [11, 16, 19],
and so on.

This paper is organized as follows. In Section 2 we introduce a convection-
diffusion model with small parameter ε for different boundary conditions, and we
build several adapted grids for possible singular boundary layers. In Section 3 we
present a multiscale finite element computation with a reduced matrix to solve
the perturbed Robin model. In Section 4, boundary approximation strategies are
provided for the traditional FEM and the multiscale FEM, respectively. Numerical
experiments are presented in Section 5 to demonstrate that the reduced MsFEM
on an adapted grid performs well, which ensures accuracy and stability. Finally we
conclude in Section 6.
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2. Model problem and adapted grid

2.1. Convection-diffusion Robin problem

Consider the one dimensional convection-diffusion model with a Robin boundary
conditionLu := −εu′′(x) + b(x)u′(x) + c(x)u(x) = f(x), in x ∈ I = (0, 1),

k1u(0) + k2u
′(0) = uL, k3u(1) + k4u

′(1) = uR,
(2.1)

where u(x) is the exact solution, b(x) and c(x) are the varying coefficients, b(x) ≥
2β > 0, and f(x) is the right force. And each constant ki is zero or non-zero, ac-
cording to different types of boundary condition. We use ∂I to denote the boundary
of the interval I, and ε << 1 is a perturbed parameter. It is well-known that small
ε will bring the so-called boundary layer phenomena, which makes the traditional
methods lose their accuracy and stability.

Lemma 2.1 ( [2]). For 0 ≤ k ≤ 4, the k-th order derivative of u has the bound

|u(k)(x)| ≤ C(1 + ε−ke(x, β, ε)),

where e(x, β, ε) = e−
βx
ε + e−

β(1−x)
ε . And

u(x) = v(x) + w(x)

satisfies Lu = f , where the smooth part v(x) and the boundary layer part w(x)
satisfy Lv = f and Lw = 0, and

|v(k)(x)| ≤ C,

|w(k)(x)| ≤ C · ε−ke(x, β, ε).

The accurate and stable solution of problem (2.1) is our target, and we attempt
to pursue a uniformly convergent approximation to the exact solution, which is
independent of parameter ε.

The variational form of (2.1) is to seek u ∈ H1 such that

a(u, v) = (f, v), ∀v ∈ H1, (2.2)

where

a(u, v) =

∫ 1

0

(εu′v′ + b(x)u′v + c(x)uv)dx, (2.3)

(f, v) =

∫ 1

0

fvdx. (2.4)

Here H1 = {f |f ∈ L2, f ′ ∈ L2} and L2 is a square integrable space.
The bilinear form a(·, ·) is elliptical and continuous,

C1|v|21,Ω ≤ a(v, v) ≤ C2|v|21,Ω, ∀v ∈ H1
0 (Ω),

|a(u, v)| ≤ C|u|1,Ω|v|1,Ω, ∀u, v ∈ H1
0 (Ω).
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2.2. Adapted grid partition

Given model (2.1) with a large parameter ε, since traditional methods address well
and there is no need for a great number of partition, in a way we use the Uniform
grid is enough. However, with a small ε it will produce boundary layers of width
O(τ) = O(εlnN), where N is the partition number. At this time, even though a
very huge partition N is used, the traditional method solves the problem invalidly
and it may perform a troublesome simulation.

Two typical strategies have been studied for the numerical solution of singu-
larly perturbed partial differential equations. One is the h refinement (h denotes
the mesh size) on layer-adapted meshes. The other is the p refinement (p is de-
gree of approximating polynomials), or hp refinement (a combination of h and p
refinements), see [9, 10].

We make the a-priori estimation for the problem and know a brief location of
boundary layers, and then we may apply a non-Uniform grid partition. Keeping the
total partition number unchanged, some subintervals are refined to approximate the
boundary layer, while other subintervals are coarsened to approximate the smooth
part. This is called the h-mode adapted strategy.

First we use the Shishkin idea to form a block Uniform grid. Then each block
is partitioned to equidistant nodes [21]. For example, a transitional point τ is used
to divide the interval into two parts: boundary layer subinterval [0,τ ] and smooth
one [τ ,1], both being partitioned by N/2 elements. The Shishkin grid node xi is
defined as

Shishkin: xi =

 2τ
N · (i− 1), i = 1, · · · , N2 + 1,

τ + 2(1−τ)
N · (i− N

2 − 1), i = N
2 + 2, · · · , N + 1.

(2.5)

The second modification is the Graded grid, which is a highly anisotropic non-
Uniform grid, and it can be generated by choosing suitable mesh functions. Making
use of a space tensor product, and taking smooth part [0,1− τ ] and boundary layer
[1− τ ,1] for example, the Graded grid node xi is defined as

Graded: xi =


2(1−τ)
N · (i− 1), i = 1, · · · , N2 + 1,

1− τ( 2(N+1−i)
N )λ, i = N

2 + 2, · · · , N + 1,
(2.6)

where λ is an integer greater than 1.
Furthermore, a Bakhvalov grid is presented to be an adapted layer one, and

it should be computed according to boundary layers. Taking a transitional point
τ = εlnN

β , and suppose that there is two boundary layers with width τ near two
ends. Then we divide the interval into three sub-intervals: two boundary layers
[0, τ ], [1 − τ, 1] and one interior smooth [τ, 1 − τ ]. When the boundary layer is

near x = 0, the node distribution is determined by e−
βxi
ε = Ai + B and x1 = 0,

xN
4 +1 = τ . When the boundary layer is near x = 1, its distribution is determined

by e−
β(1−xi)

ε = Ci+D and x 3N
4 +1 = 1− τ , xN+1 = 1. Then we have

A =
4− 4N

N2
,

B =
N2 + 4N − 4

N2
,
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C =
4N − 4

N2
,

D =
−3N2 + 4

N2
.

In this way the Bakhvalov grid node xi is defined as

Bakhvalov: xi =


−εln[1 + 4(1−N)(i−1)

N2 ], i = 1, · · · , N4 + 1,

τ + 2(1−2τ)
N · (i− N

4 − 1), i = N
4 + 2, · · · , 3N

4 + 1,

1 + εln[1 + 4(1−N)(N+1−i)
N2 ], i = 3N

4 + 2, · · · , N + 1.

(2.7)

In what is mentioned above we provide four kinds of grid partition; they are
Uniform, Shishkin, Graded, and Bakhvalov. In the following, we will apply the
finite element method and multiscale finite element method, respectively, to solve
the singularly perturbed convection-diffusion model on these adapted grids. We are
encouraged to verigy the simulation superiority of the multiscale computation plus
the adapted grid. Note that there is no so-called the most optimal grid for a singu-
lar perturbation, and each one should be adjusted to the corresponding situation.
Furthermore, we point out that one dimensional node partition may be expanded
to higher dimensional problems, which is with a inner product modification of the
grid nodes.

3. Finite element and reduced multiscale computa-
tion

3.1. Finite element computation

Defining Kh as a grid partition, we build the standard finite element space

V h = {vh ∈ H1(I) : vh|K ∈ P1(K), ∀K ∈ Kh}, (3.1)

where P1(K) represents the piecewise linear polynomials in element K. If the
Galerkin finite element method is applied, its corresponding variational form is to
seek ug ∈ V h such that

a(ug, v) = (f, v), ∀v ∈ V h, (3.2)

where ug is the Galerkin FEM solution.
For example, it we use the linear basis function ψ1 = 1 − ξ, ψ2 = ξ, ξ = x−xi

h
being an isoparametric element, then their derivatives ψ′1 = − 1

h and ψ′2 = 1
h .

According to the variational form (3.2), after using integration by parts, the local
stiffness matrix in each element is computed as

a11 =

∫ xi+1

xi

[εψ′1ψ
′
1 − (b1ψ1 + b2ψ2)ψ1ψ

′
1 + (c1ψ1 + c2ψ2)ψ1ψ1] · dx

=

∫ 1

0

[
ε

h2
− (b1(1− ξ) + b2ξ)(1− ξ)(−

1

h
) + (c1(1− ξ) + c2ξ)(1− ξ)2] · hdξ

= [
ε

h2
+ (

1

3
b1 +

1

6
b2)

1

h
+ (

1

4
c1 +

1

12
c2)] · h,
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a12 =

∫ xi+1

xi

[εψ′1ψ
′
2 − (b1ψ1 + b2ψ2)ψ1ψ

′
2 + (c1ψ1 + c2ψ2)ψ1ψ2] · dx

= [− ε

h2
+ (

1

6
b1 +

1

3
b2)

1

h
+ (

1

12
c1 +

1

12
c2)] · h,

a21 =

∫ xi+1

xi

[εψ′2ψ
′
1 − (b1ψ1 + b2ψ2)ψ2ψ

′
1 + (c1ψ1 + c2ψ2)ψ2ψ1] · dx

= [− ε

h2
− (

1

3
b1 +

1

6
b2)

1

h
+ (

1

12
c1 +

1

12
c2)] · h,

a22 =

∫ xi+1

xi

[εψ′2ψ
′
2 − (b1ψ1 + b2ψ2)ψ2ψ

′
2 + (c1ψ1 + c2ψ2)ψ2ψ2] · dx

= [
ε

h2
− (

1

6
b1 +

1

3
b2)

1

h
+ (

1

12
c1 +

1

4
c2)] · h,

and the local right force vector is

F1 =

∫ xi+1

xi

f(x)ψ1 · dx

=

∫ xi+1

xi

(f1ψ1 + f2ψ2)ψ1 · dx

= (
1

3
f1 +

1

6
f2) · h,

F2 =

∫ xi+1

xi

f(x)ψ2 · dx

=

∫ xi+1

xi

(f1ψ1 + f2ψ2)ψ2 · dx

= (
1

6
f1 +

1

3
f2) · h.

In this way through the nodes data structure, we assemble the global linear algebraic
equations Au = F on the fine grid and solve it to obtain the FEM solution.

3.2. Reduced multiscale finite element computation

Being different from the above traditional FEM, the main idea of the multiscale
FEM is to capture large scale information by constructing the multiscale basis
functions through the finite element scheme, and this can be achieved by solving
the basis functions from the local problem, according to the differential operator of
the problem. As a result, it costs a low dimensional representation to obtain the
large scale solution accurately and efficiently.

We divide the whole interval I into smooth and boundary layer parts with respect
to τ = min{ 1

2 ,
εlnN
β }, and the discrete multiscale basis functions are defined on each

coarse element K ∈ Kh. For the MsFEM, its corresponding variational form is to
seek uh ∈ Uh such that

a(uh, v) = (f, v), ∀v ∈ Uh, (3.3)

where uh is the MsFEM solution. The multiscale functional space Uh is generated
by the multiscale basis functions. In this way the enriched space may reflect the
microscopic information of the original problem (2.1).
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On each coarse element K we solve the local homogeneous problem for multiscale
basis functionsLϕi := −εϕ′′i (x) + b(x)ϕ′i(x) + c(x)ϕi(x) = 0, in K,

ϕi(xj) = δij , on ∂K.
(3.4)

We refine the Kronecker condition δij of this subproblem, that is, ϕi(xj) = 1 when
i = j and ϕi(xj) = 0 when i 6= j. Since the local problem (3.4) and the original
problem (2.1) have the same differential operator, we apply the FEM to solve (3.4)
for the discrete ϕi by using the fine partition M in the coarse element K. As a
consequence, the boundary layer microscopic information on the coarse grid with
the coarse mesh size H is captured through the multiscale basis ϕi, which is a
discrete form and is no of explicit expression like the above linear basis ψi. This
is quite different from the traditional FEM, who is computed on the fine grid with
the fine mesh size h.

The boundary condition of the local problem (3.4) is important to multiscale
basis functions, even to the whole original problem. In [12] the authors provide the
choosing rule of the linear condition or the oscillatory condition to affect the well-
being of ergodicity for some cases. Basically, since our problem is one dimensional
case, each coarse element boundary ∂K is made up of two separated nodes, and
the boundary condition has no choice but to be unique, which is different for a
higher dimensional case. As a result, these multiscale basis functions can reflect
the microscopic property of the original problem, such as the boundary layer, scale
oscillation, and periodicity.

We construct the multiscale functional space

Uh = span{ϕi, ∀K ∈ Kh}. (3.5)

It is enriched with the multiscale basis functions, and these basis functions have
the ability to capture the local singular perturbation in boundary layers. In the
Matlab code we save the obtained discrete multiscale basis in a mapping matrix R,
and then every element in each row and column has local microscopic information
in the layers. In a way, we get the reduced scale global matrix Ams = R ∗ A ∗ RT
and global vector Fms = R ∗ F . Through the multiscale finite element scheme
we assemble the global linear equations to solve Amsu = Fms on the coarse grid.
As a consequence, this reduced multiscale computation just costs a low degree of
freedoms to acquire an accurate simulation.

From the literatures we know that the effectiveness of multiscale basis functions
is crucial. How to eliminate the ill influence among the scales, and how the multi-
scale basis carries more integrate information, so that the final simulation is more
trustworthy is a concern. Note that the traditional FEM solves on fine grids, while
the MsFEM solves on coarse grids. We are inclined to demonstrate that the reduced
MsFEM is an optimal method to handle the singular perturbation.

4. Boundary strategy

The boundary condition of the original problem (2.1) may be of Dirichlet type, and
also may be of Neumann or Robin type with relationship to derivatives. In this
section, we provide the boundary details, and the finite element steps are followed.
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After the variational form (3.2), we make the nodes partition on different grids,
and use the corresponding connection between the nodes and basis functions. Then
the large-scale linear algebraic equations are assembled. For example, the linear
basis function is applied as ψi = 1 − ξ, ψi+1 = ξ, where ξ = x−xi

hi
is a logical

element, hi = xi+1 − xi is a varying mesh size, and Ii = [xi, xi+1] is a sub-interval.
By interpolation we have an approximated solution as

uh = uiψi + ui+1ψi+1

= ui · (1− ξ) + ui+1 · ξ

= ui
xi+1 − x
xi+1 − xi

+ ui+1
x− xi

xi+1 − xi
, x ∈ Ii, i = 1, 2, · · · , N.

For the Dirichlet boundary as u(0) = uL, u(1) = uR, that is,u1 = uL,

uN+1 = uR.

It is simple to determine the first row and the last row in the global stiffness matrix.
Then according to the nodes data we assemble the other rows and form the following
linear equations as 

1 0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · 0 1





u1

u2

...

uN

uN+1


=



uL
...
...
...

uR


. (4.1)

When the Neumann boundary with derivatives is considered, we have an ap-
proximated derivative as

u′h = uiψ
′
i + ui+1ψ

′
i+1

= ui
−1

xi+1 − xi
+ ui+1

1

xi+1 − xi
, x ∈ Ii, i = 1, 2, · · · , N.

The condition u′(0) = uL, u′(1) = uR means thatu1
−1
h + u2

1
h = uL,

uN
−1
h + uN+1

1
h = uR.

In this way, the first row and the last row are determined as

−1
h

1
h 0 · · · 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 0 · · · −1
h

1
h





u1

u2

...

uN

uN+1


=



uL
...
...
...

uR


. (4.2)
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The Robin boundary condition u(0) = uL and u(1) + u′(1) = uR means thatu1 = uL,

uN
−1
h + uN+1

1+h
h = uR.

The first row and the last row are determined similarly, and the linear equations
are 

1 0 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 · · · −1
h

1+h
h





u1

u2

...

uN

uN+1


=



uL
...
...
...

uR


. (4.3)

As a consequence, we solve it to get the numerical solution.
It should be noted that the above fine size h could be changed to the coarse size

H, if it is used in the multiscale computation, and both could be non-equidistant
size hi or Hi (= xi+1 − xi), depending on what kind of adapted grid (2.5)-(2.7)
is used. When we apply the FEM with a very fine grid size h to obtain the FEM
solution, the system Au = F of the global linear equations is large-scaled, which
is computational cost level of O(NM). However, if we apply the MsFEM with
a relative coarse grid size H to obtain the MsFEM solution for enough accuracy,
the corresponding equations turn to Amsu = Fms which are relative small-scaled of
computational cost O(N), and this shows the superiority of the reduced MsFEM,
especially for high dimensional cases.

What is more interesting if high dimensional models are encountered, the above
strategy we can extend too. We just need to mark all of the boundary nodes as
for specific serial ui, then modify the concrete lows in the global stiffness matrix A,
which is according to corresponding boundary conditions.

5. Numerical experiments

To demonstrate the performance of different methods, we define the finite element
method on Uniform grid as FEM(U), on Shishkin grid as FEM(S), on Graded grid
as FEM(G), and on Bakhvalov grid as FEM(B), and define the multiscale finite
element method on Uniform grid as MsFEM(U), on Shishkin grid as MsFEM(S),
on Graded grid as MsFEM(G), and on Bakhvalov grid as MsFEM(B) to solve the
convection-diffusion problem, respectively. Still we set N as the coarse element
partition number, and M as the fine partition number on each coarse element.
Then the FEM solves the problem on a very fine grid NM , while the MsFEM
solves it on a relative coarse grid N . With the mesh refinement, we compare the
differences among them about the numerical accuracy and stability. And we try
to verigy that the reduced MsFEM may acquire the uniform-convergence, which is
independent of the singular parameter ε.

We define the errors E of L2 norm and H1 norm as

‖E‖L2 = (

∫ 1

0

(u− uapprox)2dx)
1
2 , (5.1)
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‖E‖H1 = (

∫ 1

0

(u′ − u′approx)2dx)
1
2 , (5.2)

where u is the exact solution, uapprox is the corresponding numerical solution, and
their norm is a criterion to judge the advantage of methods.

Example 5.1. Given the exact solution of (2.1)

u(x) =
e
x−1
ε − e− 1

ε

1− e− 1
ε

+ x2,

with the Dirichlet boundary condition u(0) = 0, u(1) = 2, we know the boundary
layer is near x = 1. Setting the non-constant coefficient b(x) = 1 and c(x) = x, and
the right force f(x) = 2x − 2ε + xu. Exact u(x) is shown in Fig. 1, and we find
that when ε = 10−4 it will come up with the singularly perturbed boundary layers,
which changes rapidly near the boundary and its derivative is huge.
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Figure 1. Example 5.1’s exact solution u when ε = 10−1, 10−4, respectively.

Table 1. When ε = 10−1, the L2 norm errors of FEM(U), FEM(S), FEM(G) and MsFEM(U), Ms-
FEM(S), MsFEM(G).

NM FEM(U) FEM(S) FEM(G) N MsFEM(U) MsFEM(S) MsFEM(G)
16 3.726e-3 9.257e-4 6.710e-4 4 4.854e-3 2.110e-2 1.192e-2
32 9.544e-4 4.505e-4 1.964e-4 8 1.781e-3 1.620e-3 5.095e-4
64 2.401e-4 1.694e-4 5.182e-5 16 4.825e-4 2.093e-5 1.012e-4
128 6.011e-5 5.695e-5 1.278e-5 32 1.231e-4 4.342e-5 6.417e-5
256 1.503e-5 1.799e-5 2.979e-6 64 3.096e-5 2.041e-5 2.280e-5
512 3.759e-6 5.460e-6 6.508e-7 128 7.754e-6 7.309e-6 6.094e-6
1024 9.397e-7 1.612e-6 1.269e-7 256 1.940e-6 2.324e-6 1.152e-6
2048 2.349e-7 4.658e-7 1.770e-8 512 4.851e-7 6.816e-7 4.600e-8

From Fig. 1a and Table 1 we find that there are no boundary layers for a larger
ε = 10−1, and the traditional FEM can solve the problem effectively and its result is
the most accurate on the fine Graded grid. At the meantime, the MsFEM performs
also well on the relative coarse grid that only costs less computational resources,
and it provides a speeding-up convergence finally. To be more specific and fair, the
FEM on NM = 2048 and the MsFEM on N = 512 get the same level accuracy,
while the computation for the latter is easier and more relaxed, and has a great
advantage in higher dimensions. From Fig. 2 it testifies that the exact solution, the
FEM solution, and the MsFEM solution are almost identical when ε is large, and
both methods simulate the problem well.
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Figure 2. When ε = 10−1, the comparison of exact solution between FEM(U) on NM = 2048 or
MsFEM(S), MsFEM(G) on N = 512.

Table 2. When ε = 10−4, the L2 norm errors of FEM(U), FEM(S), FEM(G) and MsFEM(U),
MsFEM(S), MsFEM(G).

NM FEM(U) FEM(S) FEM(G) N MsFEM(U) MsFEM(S) MsFEM(G)
32 3.664e-1 9.635e-3 4.972e-3 8 4.244e+0 8.386e-2 1.775e-1
64 1.953e-2 3.727e-3 1.955e-3 16 5.395e-1 1.120e-1 2.067e-2
128 1.452e-2 5.803e-4 3.135e-4 32 1.151e-1 2.136e-1 6.518e-2
256 1.466e-3 1.165e-5 8.570e-6 64 3.401e-2 3.941e-2 7.923e-3
512 8.510e-4 3.061e-6 1.876e-6 128 7.975e-3 3.976e-3 1.106e-3
1024 7.293e-4 9.281e-7 1.911e-6 256 1.757e-3 6.768e-4 4.505e-4
2048 3.463e-4 2.723e-7 2.089e-5 512 4.987e-4 1.705e-4 1.316e-4
4096 — — — 1024 2.320e-4 5.809e-5 4.359e-5

From Fig. 1b and Table 2 we find that when ε = 10−4 is smaller, it will bring
singular boundary layers. And even worse, the FEM on a very fine grid it can not be
computed, and on the Graded grid shows the divergence with the mesh refinement.
On the contrary, the MsFEM on a relative coarse grid solves the problem with
only a low degree of freedoms to obtain accurate results, and ensures the uniform
convergence with the mesh-refinement. From Fig. 3 we observe that the comparison
of the FEM(U) with the exact solution is alike in the smooth part, but is far way
from each other in the boundary layer part even on a very fine grid NM = 2048.
However, the MsFEM and the exact solution are almost totally coincident on the
relative coarse grid N = 512, so its simulation is perfect to a certain extent.
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Figure 3. When ε = 10−4, the comparison of exact solution between FEM(U) on NM = 2048 or
MsFEM(S), MsFEM(G) on N = 512.
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Example 5.2. Given (2.1) the Robin problem’s exact solution

u(x) =
em1x − em2x

(1 +m1)em1 − (1 +m2)em2
,

where m1 = −1+
√

1+4ε
2ε and m2 = −1−

√
1+4ε

2ε , and setting the Robin boundary
condition u(0) = 0, u(1) + u′(1) = 1. Taking the coefficients b(x) = −1 and
c(x) = 1, and the right force f(x) = 0. The exact solution u(x) is shown in Fig. 4,
and a small ε = 10−4 may bring the boundary layer near x = 0, which gives trouble
in numerical simulations.
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Figure 4. Example 5.2’s exact solution u when ε = 10−1, 10−4, respectively.

Table 3. When ε = 10−4, the H1 norm errors of FEM(U), FEM(S), FEM(B) and MsFEM(U),
MsFEM(S), MsFEM(B).

NM FEM(U) FEM(S) FEM(B) N MsFEM(U) MsFEM(S) MsFEM(B)
16 1.793e-1 4.989e-2 6.804e-3 4 1.863e-1 4.287e-2 3.193e-2
32 2.394e-1 4.038e-2 3.348e-3 8 1.224e-1 1.919e-2 1.568e-2
64 1.679e-1 2.736e-2 1.736e-3 16 4.634e-2 8.465e-3 7.842e-3
128 3.439e-2 7.935e-3 9.475e-4 32 1.792e-2 3.800e-3 3.978e-3
256 4.425e-3 5.554e-4 4.905e-4 64 5.399e-3 2.041e-3 2.059e-3
512 1.178e-3 2.531e-4 2.451e-4 128 1.661e-3 1.064e-3 1.101e-3
1024 3.215e-4 1.268e-4 1.225e-4 256 5.623e-4 5.746e-4 6.291e-4
2048 9.120e-5 6.350e-5 6.125e-5 512 2.116e-4 3.332e-4 4.017e-4
4096 — — — 1024 8.894e-5 2.166e-4 2.967e-4
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Figure 5. When ε = 10−4, the comparison of exact solution between FEM(U) on NM = 2048 or
MsFEM(S), MsFEM(B) on N = 512.

From Fig. 4b and Table 3 we observe that a small ε = 10−4 will cause the
singular boundary layer, and the FEM performs laboriously on fine grids and doesn’t
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converge on the Graded grid (not being listed here). However, the MsFEM computes
on the coarse grid and keeps a uniform-convergence with the mesh refinement. And
it is proved the first order H1 norm convergence, which is in accordance with the
mathematical theory. From Fig. 5, when ε is small, even though on a very fine grid
NM = 2048 the FEM(U) is far away from the exact solution near the boundary
x = 0. On the other side, the MsFEM on the coarse grid N = 512 is almost identical
to the exact solution.

Through the numerical experiments we show that, the reduced multiscale finite
element computation plus adapted grids can solve the convection-diffusion model
with different boundary conditions efficiently. It acquires high accuracy and con-
vergent result, which is independent of the singular parameter ε. This is attributed
to the fact that the multiscale basis functions capture the local perturbation. With
the help of the adapted grid resulting in the reduced computational cost, the new
method simulates the singular perturbation problem excellently.

6. Concluding remarks

In this paper, we present a reduced multiscale computation for a singularly per-
turbed convection-diffusion model. For different types of boundary conditions such
as the Robin type, we apply three interpolating strategies for accurate boundary
approximations. As for the possible boundary layer phenomena, several adapted
grids are constructed to recover the rapid oscillation. In our multiscale computa-
tion, the multiscale basis functions have the ability to capture the local microscopic
information. With the help of reduced mapping matrix we just compute on the
coarse grids with small computational cost to obtain the accurate and convergent
numerical results, which are independent of the singular parameter.
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