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Abstract The main purpose of this paper is to study the existence and u-
niqueness of solutions for the hyperbolic fractional differential equations with
integral conditions. Under suitable assumptions, the results are established by
using an energy integral method which is based on constructing an appropriate
multiplier. Further we find the solution of the hyperbolic fractional differential
equations using Adomian decomposition method. Examples are provided to
illustrate the theory.
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1. Introduction

Since fractional derivatives and integrals are more suitable than integer order deriva-
tives and integrals in the real world phenomena, many researchers concentrate on
fractional calculus in the previous decades. Due to an enthusiastic efforts of re-
searchers, there has been a rapid development on fractional calculus and its ap-
plications (see [2, 13, 18]). Because of its framework and novel surprising insights,
the continuous growth of the fractional differential equations to cope with engineer-
ing and the applied sciences is reflected in the huge number of books and papers
involving fractional derivatives in the last few decades. For example, several au-
thors have studied the existence and uniqueness results of fractional differential
equations [5, 6, 16]. Observability, controllability and stability of fractional dynam-
ical systems are also discussed in the literature. For further details of qualitative
behaviors of fractional dynamical systems, see the papers [3, 4, 17].

Another interesting area of research is the investigation of fractional partial dif-
ferential equations. In recent years, fractional partial differential equations are more
and more helpful in modeling fluid flow and biological systems. Hence many of the
authors have investigated fractional partial differential equations. Here we propose
some of the works concerning fractional partial differential equations. Guo et al. [12]
described the theoretical and numerical aspects of fractional partial differential e-
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quations arising in plasma physics and atmosphere ocean dynamics. Sakamoto and
Yamamoto [31] proved the existence and uniqueness of fractional diffusion wave
equations and analyzed the asymptotic behavior of the same equation by using the
eigenfunction expansions. For fractional diffusion system which appears in biolog-
ical populations of cells, the existence and uniqueness of solution in the Sobolev
space is presented in [14] by the analytic method of fixed point theory. Javidi and
Nyamoradi [15] considered the phytoplankton model and analyzed the dynamic be-
havior of the model through fractional Routh-Hurwits conditions and also examined
local stability of the equilibrium points of the corresponding model. In [27], Oussaeif
and Bouziani studied about the existence and uniqueness of solution for parabolic
fractional differential equations

Lv =
C∂α

∂tα
v(x, t)− ∂

∂x

(
a(x, t)

∂v

∂x

)
= F (x, t), (1.1)

in a functional weighted Sobolev space with integral conditions by using a priori
estimates. Mesloub [23] discussed the existence and uniqueness of a strong solution
for a fractional two times evolution equation with initial and boundary integral
conditions.

There are a very few articles related to existence of unique solutions of fractional
partial differential equations by means of energy inequality method except [27]
and [23]. But for partial differential equations, many authors have applied the
energy integral method. For instance, the solvability of a class of singular hyperbolic
differential equation

Lv = vtt −
1

x
vx − vxx = f(x, t), (x, t) ∈ (0, R)× (0, T ) (1.2)

with weighted integral conditions has been studied by Mesloub and Bouziani [20].
In [7], Bouziani established the existence and uniqueness results for parabolic and
hyperbolic equations with boundary integral conditions by applying the technique
based on priori estimates. He also studied the well-posedness of a second order
hyperbolic equation with Bessel operator [8]. Mesloub [21] established the well-
posedness of a nonlinear pseudoparabolic equation which is a model of heat con-
duction. By applying an iterative process, he proved the existence and uniqueness
of solution for the two dimensional parabolic equation [22]. In addition, see [9, 28]
and references therein. Motivated by these results, we extend the results of [27] to
hyperbolic fractional partial differential equations and also obtain the approximate
solutions by Adomian decomposition method.

The rest of this paper is organized as follows: In Section 2, we state some basic
definitions and properties that are inherently tied to fractional calculus. Reformula-
tion of the problem is given in Section 3. In Section 4, the existence and uniqueness
of solution of the hyperbolic fractional differential equation with the boundary inte-
gral conditions is proved by energy estimate arguments. Section 5 investigates the
approximate solution of the problem by using Adomian decomposition method. In
Section 6, two examples are proved to illustrate the unique existence result. Last
Section contains conclusion of this work.
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2. Preliminaries

We begin this section by briefly introducing the basic definitions of fractional cal-
culus. Let Γ(·) denote the gamma function. For any n − 1 < α < n, n ∈ N, the
commonly used fractional definitions are defined as follows:

Definition 2.1 ( [16]). The partial Riemann-Liouville fractional integral operator
of order α with respect to t of a function f(x, t) is defined by

Iαf(x, t) =
1

Γ(α)

∫ t

0

f(x, s)

(t− s)n−α
ds.

Definition 2.2 ( [16]). The partial Riemann-Liouville fractional derivative of order
α of a function f(x, t) with respect to t is of the form

∂α

∂tα
f(x, t) =

1

Γ(n− α)

∂n

∂tn

∫ t

0

f(x, s)

(t− s)α−n+1
ds,

where the function f(x, t) has absolutely continuous derivatives upto order (n− 1).

Definition 2.3 ( [16]). The Caputo partial fractional derivative of order α with
respect to t of a function f(x, t) is defined as

C∂α

∂tα
f(x, t) =

1

Γ(n− α)

∫ t

0

1

(t− s)α−n+1

∂nf(x, s)

∂sn
ds,

where the function f(x, t) has absolutely continuous derivatives upto order (n− 1).

To know the properties of these operators see the books [26, 32] and for more
facts on the geometric and physical interpretation for fractional derivatives of both
Riemann-Liouville and Caputo types, see [30]. In this paper we adopt Caputo
fractional derivative, since it permits conventional initial conditions which is in-
volved in our problem. Next we give some well known inequalities which are needed
throughout this paper.

Let =xu =
∫ x

0
u(ξ, t) dξ and =tu =

∫ t
0
u(x, τ) dτ .

(i) Cauchy’s inequality with ε [10]

ab ≤ εa2 +
1

4ε
b2, a, b > 0 and ε > 0.

(ii) Poincare-type inequalities [23]

(a) ‖=xu‖2L2(Ω) ≤
1

2
‖u‖2L2(Ω). (2.1)

(b) ‖=2
xu‖2L2(Ω) ≤

1

2
‖=xu‖2L2(Ω). (2.2)

(iii) For any α, we have the inequality [23]∫ 1

0

C∂α

∂tα
(=xu)2 dx ≤ 2

∫ 1

0

C∂α

∂tα
(=xu)(=xu) dx. (2.3)
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3. Formulation of the Problem

Consider the domain Q = Ω× J = (0, 1)× (0, T ), 0 < T <∞ and the equation

Lw = g(x, t), 0 < x < 1, 0 < t < T, (3.1)

where

Lw =
C∂α

∂tα
w(x, t)− a(x, t)

∂w

∂x
− ∂

∂x

(
b(x, t)

∂w

∂x

)
, 1 < α < 2

with the initial conditions

l1w = w(x, 0) = φ(x), x ∈ Ω, (3.2)

l2w =
∂w(x, 0)

∂t
= ψ(x), x ∈ Ω, (3.3)

and the integral conditions∫
Ω

xiw(x, t) dx = mi(t), t ∈ J, (i = 0, 1), (3.4)

where a, b, g, φ, ψ and m′is are known functions and
C∂α

∂tα
denotes the Caputo frac-

tional derivative. The compatibility conditions are∫
Ω

xiφ(x) dx = mi(0), (i = 0, 1).

For our convenience, we change the non-homogeneous boundary conditions to ho-
mogeneous ones. So let

v(x, t) = m0(t) + 10
(
2m1(t)−m0(t)

)
(4x3 − 3x2).

Now by introducing a new function u(x, t) = w(x, t)−v(x, t), the problem (3.1)-(3.4)
can be written as

Lu =
C∂α

∂tα
u(x, t)− a(x, t)

∂u

∂x
− ∂

∂x

(
b(x, t)

∂u

∂x

)
, 1 < α < 2

= f(x, t), (3.5)

l1u = u(x, 0) = ϕ(x), x ∈ Ω, (3.6)

l2u =
∂u(x, 0)

∂t
= Ψ(x), x ∈ Ω, (3.7)∫

Ω

xiu(x, t) dx = 0, t ∈ J, (i = 0, 1). (3.8)

Rather than the function w, it is enough to prove the existence and uniqueness of
solution for the function u. Now it is sufficient to show the existence and uniqueness
of solution of the problem (3.5)-(3.8).
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4. Existence and Uniqueness of Solution

We start this section by introducing the function space L2(Ω), the space of square
integrable functions on Ω. The solution of the problem (3.5)-(3.8) can be considered
as a solution of the operator equation Lu = F , where L = (L, l1, l2) and F =
(f, ϕ,Ψ). The operator L : B → H is considered with the domain

D(L) =

u∈ L2(Q) :
C∂αu

∂tα
, ux, uxx ∈ L2(Q)

and u satisfies the condition (3.8),
(4.1)

where B is a Banach space of functions with respect to the norm

‖u‖2B = ‖=xu‖2L2(Q) (4.2)

and H is the Hilbert space endowed with the norm

‖F‖2H =

∫
J

(
‖f‖2L2(Ω) + Iα‖f‖2L2(Ω) + ‖=xϕ‖2L2(Ω) + ‖=xΨ‖2L2(Ω)

)
dt. (4.3)

The central task of this paper is to show the following result.

Theorem 4.1. Let
∂2a

∂x2
− ∂a

∂x
− ∂2b

∂x2
+ 4 inf

x∈Ω
b− ε ≥M for sufficiently small ε and

M > 0. Then there exists a positive constant C such that

‖u‖B ≤ C‖Lu‖H , u ∈ D(L), (4.4)

where C is independent of u.

Proof. Multiplying equation (3.5) by Mu = −=2
xu, then integrating over Ω we

obtain ∫
Ω

Lu ·Mu dx =−
∫

Ω

C∂αu

∂tα
(=2

xu) dx+

∫
Ω

a(x, t)
∂u

∂x
(=2

xu) dx

+

∫
Ω

∂

∂x

(
b(x, t)

∂u

∂x

)
(=2

xu) dx

=−
∫

Ω

f(x, t)(=2
xu) dx. (4.5)

Using the conditions (3.6)-(3.8) and integration by parts, we attain

−
∫

Ω

C∂αu

∂tα
(=2

xu) dx =

∫
Ω

C∂α

∂tα
(=xu)(=xu) dx, (4.6)∫

Ω

a(x, t)
∂u

∂x
(=2

xu) dx =
1

2

∫
Ω

∂2a

∂x2
(=xu)2 dx− 1

2

∫
Ω

∂a

∂x
(=xu)2 dx, (4.7)∫

Ω

∂

∂x

(
b(x, t)

∂u

∂x

)
(=2

xu) dx =

∫
Ω

b(x, t)(u(x, t))2 dx− 1

2

∫
Ω

∂2b

∂x2
(=xu)2 dx. (4.8)

With the help of Cauchy’s inequality with ε, the right hand side of (4.5) becomes

−
∫

Ω

f(x, t)(=2
xu) dx ≤ ε

∫
Ω

(=2
xu)2 dx+

1

4ε

∫
Ω

(f(x, t))2 dx. (4.9)
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Substituting (4.6)-(4.9) in (4.5) and applying the inequalities (2.2) and (2.3), we
have∫

Ω

C∂α

∂tα
(=xu)2 dx+

∫
Ω

∂2a

∂x2
(=xu)2 dx−

∫
Ω

∂a

∂x
(=xu)2 dx+ 2

∫
Ω

b(x, t)(u(x, t))2 dx

−
∫

Ω

∂2b

∂x2
(=xu)2 dx ≤ 2ε

∫
Ω

(=2
xu)2 dx+

1

2ε

∫
Ω

(f(x, t))2 dx

≤ ε
∫

Ω

(=xu)2 dx+
1

2ε

∫
Ω

(f(x, t))2 dx. (4.10)

Simplifying the above inequality, we get∫
Ω

C∂α

∂tα
(=xu)2 dx+ 2 inf

x∈Q
b

∫
Ω

(u(x, t))2 dx+

∫
Ω

(
∂2a

∂x2
− ∂a

∂x
− ∂2b

∂x2
− ε

)
(=xu)2 dx

≤ 1

2ε

∫
Ω

(f(x, t))2 dx. (4.11)

To estimate the second integral on the left hand side of (4.11), make use of the
inequality (2.1) and observe that∫

Ω

C∂α

∂tα
(=xu)2 dx+

∫
Ω

(
∂2a

∂x2
− ∂a

∂x
− ∂2b

∂x2
+ 4 inf

x∈Q
b− ε

)
(=xu)2 dx

≤ 1

2ε

∫
Ω

(f(x, t))2 dx. (4.12)

By the assumption

(
∂2a

∂x2
− ∂a

∂x
− ∂2b

∂x2
+ 4 inf

x∈Q
b − ε

)
≥ M > 0, we can write the

above inequality as

C∂α

∂tα
‖=xu‖2L2(Ω) +M‖=xu‖2L2(Ω) ≤

1

2ε
‖f‖2L2(Ω). (4.13)

This inequality also takes the form

C∂α

∂tα
‖=xu‖2L2(Ω) + ‖=xu‖2L2(Ω) ≤

(2ε)−1

min{1,M}
‖f‖2L2(Ω).

Since u(x, 0) = ϕ(x),
∂u(x, 0)

∂t
= Ψ(x) and the property

Iα
C∂α

∂tα
u(x, t) = u(x, t)−

n−1∑
k=0

tk

k!

∂

∂t
u(x, 0), n− 1 < α < n, (4.14)

we deduce from (4.13) that

‖=xu‖2L2(Ω) − ‖=xϕ‖
2
L2(Ω) − t‖=xΨ‖2L2(Ω) ≤

(2ε)−1

min{1,M}
Iα‖f‖2L2(Ω), (4.15)

‖=xu‖2L2(Ω) ≤
(2ε)−1

min{1,M}
‖f‖2L2(Ω). (4.16)
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Then combining (4.15) and (4.16),

‖=xu‖2L2(Ω) ≤ C
(
‖f‖2L2(Ω) + Iα‖f‖2L2(Ω) + ‖=xϕ‖2L2(Ω) + ‖=xΨ‖2L2(Ω)

)
, (4.17)

where C =
max{1, T, (2ε)−1}

min{1,M}
. Now integrating (4.17) over J , we conclude that

‖=xu‖2L2(Q) ≤ C
∫
J

(
‖f‖2L2(Ω) + Iα‖f‖2L2(Ω) + ‖=xϕ‖2L2(Ω) + ‖=xΨ‖2L2(Ω)

)
dt.

This completes the proof.
From (4.4), there exists a bounded inverse L−1 on the range R(L) of L. Since we

don’t have any information about R(L) except that R(L) ⊂ H, we should extend
the operator L such that (4.4) holds for the extension and range of that extension
is the space H.

Corollary 4.1. The operator L from B into H has a closure L̄.

Proof. The proof is similar to that in [7].

Definition 4.1. A solution of the equation L̄u = (f, ϕ,Ψ) is called a strong solution
of problem (3.5)-(3.8).

Since L̄ is the closure of L, we can extend the inequality (4.4) to the operator L̄
by applying limits on both the sides of (4.4). Thus under the conditions of Theorem
4.1, we can say that

‖u‖B ≤ C‖L̄u‖H . (4.18)

holds for any u ∈ D(L̄). Hence we establish that under the assumptions of Theorem
4.1, a strong solution of the problem (3.5)-(3.8) is unique if it exists, and depends
continuously on F ∈ H. To prove the existence of the solution, it is sufficient to
show that the range R(L) = H. But R(L̄) equals to the closure R(L) of R(L). So
we have to show R(L) is dense in H for all u ∈ B.

Theorem 4.2. Assume that the conditions of Theorem 4.1 holds. If for all u ∈
D0(L), where D0(L) = {u : u ∈ D(L), l1u = l2u = 0} and for some w ∈ L2(Q) we
consider

(Lu, ω)L2(Q) = 0, (4.19)

then ω vanishes almost everywhere in Q.

Proof. From the equation (3.5), we can see that(
C∂α

∂tα
u(x, t)− a(x, t)

∂u

∂x
− ∂

∂x

(
b(x, t)

∂u

∂x

)
, ω

)
L2(Q)

= 0. (4.20)

Since (4.19) holds for all functions u ∈ D0(L), it can be expressed in a form as

u(x, t) = =tz(x, τ),

where z(x, t) satisfies the conditions (3.6)− (3.8) such that

z, zx,
C∂αz

∂tα
,
∂

∂x

(
b
∂=tz
∂x

)
∈ L2(Q).
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Therefore the equation (4.20) becomes,∫
Q

C∂α

∂tα
=tz(x, τ) · ω dx dt =

∫
Q

(
a(x, t)

∂=tz(x, τ)

∂x

)
· ω dx dt

+

∫
Q

∂

∂x

(
b(x, t)

∂=tz(x, τ)

∂x

)
· ω dx dt. (4.21)

Now we express ω in terms of z as

ω = −=2
x=tz.

Substituting ω in the equation (4.21) and applying integration by parts, each term
can be estimated as∫

Q

C∂α

∂tα
(=tz) · ω dx dt =

∫
Q

C∂α

∂tα
(=x=tz)(=x=tz) dx dt, (4.22)∫

Q

a(x, t)
(∂=tz)
∂x

· ω dx dt =
1

2

∫
Q

∂a

∂x
(=x=tz)2 dx dt

− 1

2

∫
Q

∂2a

∂x2
(=x=tz)2 dx dt,

(4.23)

∫
Q

∂

∂x

(
b(x, t)

∂=tz
∂x

)
· ω dx dt =

1

2

∫
Q

∂2b

∂x2
(=x=tz)2 dx dt

−
∫
Q

b(x, t)(=tz)2 dx dt.

(4.24)

Now (4.21) can be viewed as,∫
Q

C∂α

∂tα
(=x=tz)(=x=tz) dx dt+

1

2

∫
Q

∂2a

∂x2
(=x=tz)2 dx dt+

∫
Q

b(x, t)(=tz)2 dx dt

=
1

2

∫
Q

∂a

∂x
(=x=tz)2 dx dt+

1

2

∫
Q

∂2b

∂x2
(=x=tz)2 dx dt. (4.25)

Using Poincare type inequality and the inequality

C∂α

∂tα
(=x=tz)2 ≤ 2

C∂α

∂tα
(=x=tz)(=x=tz),

we arrive at∫
Q

C∂α

∂tα
(=x=tz)2 dx dt ≤

∫
Q

(
∂a

∂x
+
∂2b

∂x2
− ∂2a

∂x2
− 4 inf

Q
b

)
(=x=tz)2 dx dt

≤ −(M + ε)

∫
Q

(=x=tz)2 dx dt. (4.26)

Hence the right hand side of (4.26) is nonpositive. That is,∫
Q

C∂α

∂tα
(=x=tz)2 dx dt ≤ 0.

Thus we obtain z ≡ 0 in Q. Therefore ω ≡ 0 in Q.
As discussed in [7], this implies that the problem (3.5)-(3.8) has a solution

u = L−1F .
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5. Adomian Decomposition Method

In this section, we apply the decomposition method suggested by Adomian to
find the approximate solution of the problem (3.1)-(3.4). Adomian decomposition
method is the most effective iterative method for finding the solutions of fractional
partial differential equations in the form of infinite series. This method has the ad-
vantage that we need not linearize the given problem and it has been discussed by
many authors [1,19,24,33]. Gepreel [11] has used Adomian decomposition method
to find the approximate solutions of time and space fractional partial differential
equations. Finally he justified that Adomian decomposition method is very efficien-
t and a powerful tool to fractional partial differential equations. The solution of
system of fractional partial differential equations has been found by Parthiban and
Balachandran [29] by using Adomian decomposition method. Joice Nirmala and
Balachandran [25] determined the solution of time fractional telegraph equation by
means of Adomian decomposition method and also analysed the efficiency of this
method.

To implement the technique to our problem, we first operate by Iα on both the
sides of (3.1) and get

Iα

[
C∂αw(x, t)

∂tα

]
= Iα

[
a(x, t)

∂w

∂x
+

∂

∂x

(
b(x, t)

∂w

∂x

)
+ g(x, t)

]
.

By using the property (4.14) we attain that

w(x, t) = w(x, 0) + t
∂w(x, 0)

∂t
+ Iα

[
a(x, t)

∂w

∂x
+

∂

∂x

(
b(x, t)

∂w

∂x

)
+ g(x, t)

]

= φ(x) + tψ(x) + Iα

[
a(x, t)

∂w

∂x
+

∂

∂x

(
b(x, t)

∂w

∂x

)
+ g(x, t)

]
.

Let

w0 = φ(x) + tψ(x) + Iαg(x, t), (5.1)

wn+1 = Iα

[
a(x, t)

∂wn
∂x

+
∂

∂x

(
b(x, t)

∂wn
∂x

)]
. (5.2)

Then iteration process leads to

w1(x, t) = Iα

[
a(x, t)

∂w0

∂x
+

∂

∂x

(
b(x, t)

∂w0

∂x

)]
,

w2(x, t) = Iα

[
a(x, t)

∂w1

∂x
+

∂

∂x

(
b(x, t)

∂w1

∂x

)]
, · · · .

By proceeding in this manner, the approximate solution of (3.1) takes the form

w(x, t) =

∞∑
n=0

wn(x, t)

=φ(x) + tψ(x) + Iαg(x, t) + Iα

[
(x, t)

∂w0

∂x
+

∂

∂x

(
b(x, t)

∂w0

∂x

)]
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+ Iα

[
a(x, t)

∂w1

∂x
+

∂

∂x

(
b(x, t)

∂w1

∂x

)]
+ · · · . (5.3)

In the next section we present two examples that illustrate the existence of solutions
of hyperbolic fractional differential equation (3.1) using Adomian decomposition
method.

6. Examples

Example 6.1. Consider the equation (3.1) with a(x, t) = 1, b(x, t) = 1,

φ(x) = 0, ψ(x) = 0 and g(x, t) =
3t2

2!
sinhx. Then the equation (3.1) becomes

C∂α

∂tα
w(x, t)− ∂w

∂x
− ∂2w

∂x2
=

3t2

2!
sinhx, (6.1)

with the initial conditions

l1w = w(x, 0) = 0

and

l2w =
∂w(x, 0)

∂t
= 0.

Then Adomian decomposition method leads to
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α=1.8
α=2

Figure 1. The approximate solution when 1 < α ≤ 2 and 0 < t ≤ 2.

w0(x, t) =
3 sinhx

Γ(3 + α)
t2+α,

w1(x, t) =
3(coshx+ sinhx)

Γ(3 + 2α)
t2+2α,

w2(x, t) =
6(coshx+ sinhx)

Γ(3 + 3α)
t2+3α,

w3(x, t) =
12(coshx+ sinhx)

Γ(3 + 4α)
t2+4α
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Table 1. The approximate solution for the different values of x, t and α.

α
t x 1.2 1.4 1.6 1.8 2.0

0.4 0.4 0.00846 0.00539 0.00340 0.00212 0.00131
0.8 0.01830 0.01166 0.00735 0.00459 0.00284
1.2 0.03111 0.01982 0.01250 0.00781 0.00483
1.6 0.04896 0.03119 0.01967 0.01228 0.00760
2.0 0.07474 0.04762 0.03003 0.01876 0.01161

0.8 0.4 0.07779 0.05693 0.04124 0.02959 0.02103
0.8 0.16819 0.12309 0.08917 0.06397 0.04547
1.2 0.28586 0.20921 0.15155 0.10873 0.07728
1.6 0.44988 0.32925 0.23851 0.17111 0.12163
2.0 0.68685 0.50267 0.36415 0.26125 0.18570

1.2 0.4 0.28471 0.22597 0.17752 0.13812 0.10647
0.8 0.61559 0.48858 0.38383 0.29863 0.23020
1.2 1.04628 0.83040 0.65238 0.50756 0.39125
1.6 1.64662 1.30687 1.02670 0.79879 0.61575
2.0 2.51394 1.99525 1.56750 1.21955 0.94008

1.6 0.4 0.71484 0.60095 0.30008 0.41211 0.33649
0.8 1.54559 1.29934 1.08124 0.89104 0.72754
1.2 2.62694 2.20841 1.83771 1.51446 1.23655
1.6 4.13425 3.47557 2.89216 2.38343 1.94607
2.0 6.31189 5.30627 4.41556 3.63886 2.97112

2.0 0.4 1.45989 1.28331 1.11664 0.96222 0.82150
0.8 3.15650 2.77471 2.41433 2.08045 1.77621
1.2 5.36491 4.71601 4.10349 3.53602 3.01892
1.6 8.44322 7.42198 6.45801 5.56493 4.75114
2.0 12.89056 11.33139 9.85967 8.49617 7.25372

and so on. Thus the solution of (6.1) is given by

w(x, t) =
3 sinhx

Γ(3 + α)
t2+α +

∞∑
m=1

3 · 2m−1(coshx+ sinhx)

Γ
(

3 + (m+ 1)α
) t2+(m+1)α.

The solution u(x, t) is evaluated and plotted in Figure 1 for different values of
α. From Figure 1, we can discern that as time increases the solution u(x, t) grows
exponentially with higher power in integer order case when compared to fractional
order case. Figure 2 shows that the surface plot of solution of the equation (6.1)
at α = 1.2 and α = 2. In Table 1, we give the values of the approximate solution
with α = 1.2, 1.4, 1.6, 1.8 and 2 for different values of x and t. The numerical
solutions obtained by Adomian decomposition method has the same behavior as
those obtained using the exact solution. In this method we need not find large
size of computations and sometimes it displays a fast convergence of the solutions.
Additionally, the numerical results found by this method signify high degree of
accuracy and adaptability to the preferred results.

Example 6.2. Consider the equation (3.1) with a(x, t) = x, b(x, t) = x2 + 3,
φ(x) = 1 + x, ψ(x) = −2x and g(x, t) = tα + xet + 1. Then the equation (3.1)
becomes
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Figure 2. Surface plot when α = 1.2 and α = 2.

C∂α

∂tα
w(x, t)− x∂w

∂x
− ∂

∂x

(
(x2 + 3)

∂w

∂x2

)
= tα + xet + 1, (6.2)

with the initial conditions

l1w = w(x, 0) = 1 + x

and

l2w =
∂w(x, 0)

∂t
= −2x.

Then Adomian decomposition method leads to

0 0.5 1 1.5 2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

time t

u(
x,

t)

 

 

α=1.2

α=1.4

α=1.6

α=1.8

α=2

Figure 3. The approximate solution when 1 < α ≤ 2 and 0 < t ≤ 2.

w0(x, t) = (1 + x)− 2tx+
Γ(1 + α)

Γ(1 + 2α)
t2α+ x

∞∑
k=0

tk+α

Γ(k + 1 + α)
+

tα

Γ(1 + α)
,

w1(x, t) =
3xtα

Γ(1 + α)
− 6xt1+α

Γ(2 + α)
+ 3x

∞∑
k=0

tk+2α

Γ(1 + k + 2α)
,
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Table 2. The approximate solution for the different values of x, t and α.

α
t x 1.2 1.4 1.6 1.8 2.0

0.4 0.2 1.38324 1.28355 1.21128 1.15926 1.12213
0.4 1.42324 1.32355 1.25128 1.19926 1.16213
0.6 1.46324 1.36355 1.29128 1.23926 1.20213
0.8 1.50324 1.40355 1.33128 1.27926 1.24213
1.0 1.54324 1.44355 1.37128 1.31926 1.28213

0.8 0.2 1.79073 1.61071 1.45971 1.33528 1.23413
0.4 1.67073 1.49071 1.33971 1.21528 1.11413
0.6 1.55073 1.37071 1.21971 1.09528 0.99413
0.8 1.43073 1.25071 1.09971 0.97528 0.87413
1.0 1.31073 1.13071 0.97971 0.85528 0.75413

1.2 0.2 2.42203 2.20003 1.98673 1.78970 1.61280
0.4 2.14203 1.92003 1.70673 1.50970 1.33280
0.6 1.86203 1.64003 1.42673 1.22970 1.05280
0.8 1.58203 1.36003 1.14673 0.94970 0.77280
1.0 1.30203 1.08003 0.86673 0.66970 0.49280

1.6 0.2 3.29712 3.10112 2.87312 2.63035 2.38613
0.4 2.85712 2.66112 2.43312 2.19035 1.94613
0.6 2.41712 2.22112 1.99312 1.75035 1.50613
0.8 1.97712 1.78112 1.55312 1.31035 1.06613
1.0 1.53712 1.34112 1.11312 0.87035 0.62613

2.0 0.2 4.43580 4.36744 4.21416 3.99627 3.73333
0.4 3.83580 3.76744 3.61416 3.39627 3.13333
0.6 3.23580 3.16744 3.01416 2.79627 2.53333
0.8 2.63580 2.56744 2.41416 2.19627 1.93333
1.0 2.03580 1.96744 1.81416 1.59627 1.33333

w2(x, t) =
9xt2α

Γ(1 + 2α)
− 18xt1+2α

Γ(2 + 2α)
+ 9x

∞∑
k=0

tk+3α

Γ(1 + k + 3α)
,

w3(x, t) =
27xt3α

Γ(1 + 3α)
− 54xt1+3α

Γ(2 + 3α)
+ 27x

∞∑
k=0

tk+4α

Γ(1 + k + 4α)
, · · · .

Thus the solution of (6.2) is given by

w(x, t) =(1 + x)− 2tx+
Γ(1 + α)

Γ(1 + 2α)
t2α + x

∞∑
k=0

tk+α

Γ(k + 1 + α)
+

tα

Γ(1 + α)

+

∞∑
i=1

3ixtiα

Γ(1 + iα)
− 2 · 3ix

Γ(2 + iα)
t1+iα + 27x

∞∑
k=0

tk+(i+1)α

Γ(1 + k + (i+ 1)α)
.

The evaluated solution u(x, t) is plotted in Figure 3 and we can discern that as time
increases the solution u(x, t) decreases and then increases at a faster rate in integer
order case when compared to fractional order case. In Table 2, we give the values
of the approximate solution with α = 1.2, 1.4, 1.6, 1.8 and 2 for different values of x
and t.
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7. Conclusion

This paper demonstrates the existence and uniqueness of solution of the problem
(3.1)-(3.4). The proof is based on the energy inequality method. The main difficulty
in this method is to choose a suitable multiplier for the problem so that it provides
an estimate from which we can establish the existence and uniqueness of solution of
the problem. Also we have applied Adomian decomposition method to investigate
the approximate solution of our problem. Finally, two examples were presented to
show the existence of solution of our problem by Adomian decomposition method.
For various fractional orders the solution of those two examples are analyzed and
the values are given in tables.
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