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FAR FIELD BOUNDARY CONDITIONS FOR
INCOMPRESSIBLE FLOWS COMPUTATION

Charles-Henri Bruneau1,† and Sandra Tancogne2

Abstract Many far field boundary conditions are proposed in the literature
to solve Navier-Stokes equations. It is necessary to distinguish the streamwise
or outlet boundary conditions and the spanwise boundary conditions. In the
first case the flow crosses the artificial frontier and it is required to avoid
reflections that can change significantly the flow. In the second case the Navier-
slip boundary condition is often used but if the frontier is not far enough the
boundary is both inlet and outlet. Thus the Navier-slip boundary condition
is not well suited as it imposes no flux through the frontier. The aim of
this work is to compare some well-known boundary conditions, to quantify
to which extend the artificial frontier can be close to the bodies in two- and
three-dimensions and to take into account the flow rate through the spanwise
directions.

Keywords Navier-Stokes equations, far field boundary conditions, flow rate
conservation.
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1. Introduction

In many incompressible flow problems, in particular when the flow around obsta-
cles is concerned, we have to specify boundary conditions on artificial frontiers to
solve the Navier-Stokes equations. But there is two kind of artificial frontiers: the
streamwise or outlet boundaries and the spanwise boundaries. In the first case the
flow crosses the artificial frontier and it is required to avoid reflections that can
change significantly the flow even if the frontier is far away. In the second case
if the frontier is far enough it is often considered that the flow is tangent to the
boundary and thus the Navier-slip boundary condition is used. However if the fron-
tier is not far enough the boundary is both inlet and outlet. Thus the Navier-slip
boundary condition is not well suited any more as it imposes no flux through the
frontier. Indeed, the flow rate at the outlet boundary is equal to the flow rate at
the entrance section, which is not the case.

In the literature there are many authors who propose efficient boundary condi-
tions, specially in the first case that includes channel flows. Dirichlet and Neumann
boundary conditions are not concerned as they induce strong reflections from the
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frontier unless the frontier is very far away or they are coupled to a sponge proce-
dure [12] which is not investigated in this work. Following some pioneering works
(see for instance [14] and [7]) many researchers have proposed outlet boundary con-
ditions that can be classified into four types: the convective boundary conditions
(see [10, 15] and references therein), the Navier-slip boundary conditions [11, 16],
the traction or directional do-nothing boundary conditions [2,3,8,18] and the open
boundary conditions involving transformed, parabolized or reduced Navier-Stokes
equations [6, 9, 13, 17]. In most cases these boundary conditions are used to derive
the velocity or the pressure or both in ghost cells outside the domain to be able to
compute the flow in the last cells of the domain. In some cases the divergence-free
condition is coupled to the boundary conditions and sometimes the flow rate is
taken into account to avoid mass loss.

On spanwise far field frontiers the researchers use either one of the boundary
conditions above or Dirichlet, Neumann or extrapolated boundary conditions. In
most cases the frontier is quite far away and even Dirichlet boundary condition with
the flow at infinity is relevant as well as the Navier-slip boundary condition. But
in both cases the boundary condition implies there is no flux through the frontier.
Which is not correct if the frontier is closer to the obstacle. Indeed, in such case,
the spanwise frontier is partly outlet in front of the body and partly inlet behind.
So it is crucial to let the flow free to leave or to enter the domain. Thus most of the
boundary conditions are not useful. The goal of this work is to find out the best
boundary condition on spanwise frontiers that allows to restrict the computational
domain as close as possible to the obstacle and to quantify the error with respect
to the distance of the frontier to the obstacle for various Reynolds numbers. The
computations are performed around an horizontal bar set down on a solid wall in
two- and three-dimensions. The results show that the error is linked to the blockage
ratio of the bar section to the domain section.

This paper is organised in four sections in addition to this introduction. The
first one is devoted to the Modelling and numerical simulations. The second one
describes the various boundary conditions. In the third section the numerical results
in two-dimensions are presented. The fourth section is devoted to the results in
three-dimensions. At the end some conclusions are provided.

2. Modelling and numerical simulations

In this section, the method used to simulate the flow past full scale Ahmed bodies
on top of a road using Cartesian grids is presented. To compute the flow around
solid bodies an immersed boundary model is used, namely the penalized Navier-
Stokes equations for the velocity and pressure (U, p) as unknowns [1] (U = (u,w) in
two-dimensions and U = (u, v, w) in three-dimensions). The non dimensional form
is based on the far field velocity of the flow U∞ and the height H of Ahmed body,
these equations read:

∂tU + (U · ∇)U − 1

Re
∆U +

U

K
+∇p = 0 in ΩT = Ω× (0, T ), (2.1)

∇ · U = 0 in ΩT , (2.2)

where Re = |U∞|H
ν is the non dimensional Reynolds number associated to the kine-

matic viscosity of the fluid ν, K = k|U∞|
νΦH = kRe

ΦH2 is the non dimensional coefficient
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of permeability of the medium representing the bodies with k the intrinsic perme-
ability and Φ the porosity of the medium, Ω is the full domain including the solid
bodies and T is the simulation time. In the fluid domain the permeability coefficient
goes to infinity, the penalization term vanishes and we solve the genuine non dimen-
sional Navier-Stokes equations. In the solid body the permeability coefficient goes
to zero, so U/K is large and dominate other velocity terms that become negligible.
It has been shown in [1] that solving these equations corresponds to solve Darcy’s
law in the solid parts and that the velocity is proportional to K. For numerical
simulations we set K = 1016 in the fluid and K = 10−8 in the solid bodies. In
the non dimensional form of the equations the time is t = tr | U∞ | /H and the
pressure is p = pr/(ρr | U∞ |2) where the subscript r stands for the real values. The
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Figure 1. Computational domain in two-dimensions.

equations (2.1), (2.2) above are solved in a computational domain (Figure 1) and
are associated to an initial datum (X = (x, z) in two-dimensions and X = (x, y, z)
in three-dimensions):

• U(X, 0) = U0(X) in Ω
and to the following boundary conditions:

• U = U∞ = (1, 0) or (1, 0, 0) at the entrance section Γi;
• U = 0 on the wall Γw;
• a boundary condition to be precised on the longitudinal far field boundary

Γs;
• σ(U, p)n+ 1

2 (U ·n)−(U−Uref ) = σ(Uref , pref )n on the exit downstream bound-
ary Γo where σ(U, p) = 1/Re(∇U+∇U t)−pI = 2νD(U)−pI is the stress tensor, n
is the unit normal pointing outside of the domain and the notation a = a+ − a− is
used. This boundary condition conveys properly the vortices downstream as shown
in [3] and in the Figure 2 for two different length of the domain in two-dimensions.
After 10, 000 time iterations some discrepancies begin to appear but this is also the
case when computing on different number of cores or when the real numbers are
stored on a different way on the computers. The result shows both that there is
no reflections and that it is possible to cut the domain close to the obstacle down-
stream. Of course, even if the instantaneous flow becomes different, the mean flow
is the same.

Then a simulation is performed using a second-order Gear scheme in time with
explicit treatment of the convection term. All the linear terms are treated implicitly
and discretized via a second-order centred finite differences scheme. The Courant-
Friedrichs-Lewy condition related to the convection term requires a time step of
the order of magnitude of the space step as U is of order one. A third-order finite
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Figure 2. Vorticity field in colours and pressure contours in black lines of the instantaneous flow by a
long bar at Re = 10, 000 after 10, 000 time iterations in two domains of different length.

differences upwind scheme is used for the space discretization of the convection
terms [5]. The efficiency of the resolution is obtained by a multigrid procedure using
a cell-by-cell Gauss-Seidel smoother. For each cell in 3D, it consists in reversing the
7× 7 matrix:

a11 0 0 0 0 0 1
δx

0 a22 0 0 0 0 − 1
δx

0 0 a33 0 0 0 1
δy

0 0 0 a44 0 0 − 1
δy

0 0 0 0 a55 0 1
δz

0 0 0 0 0 a66 − 1
δz

− 1
δx

1
δx − 1

δy
1
δy − 1

δz
1
δz 0





ui− 1
2 ,j,k

ui+ 1
2 ,j,k

vi,j− 1
2 ,k

vi,j+ 1
2 ,k

wi,j,k− 1
2

wi,j,k+ 1
2

pi,j,k


=



b1

b2

b3

b4

b5

b6

b7


(2.3)

with (aii)1≤i≤6 the diagonal composed of the time term, the diagonal of the linear
diffusion terms and the penalization term, and (bi)1≤i≤7 the second member made
of all the remaining terms including the non-linear convection terms and the second
member of the equation if any.

The computational domain is Ω = (0 , 16) × (0 , h) in two-dimensions and Ω =
(0 , 16)× (0 , h)× (0 , h) in three-dimensions where the height of the computational
domain take the values 4, 8, 16, 32, 64, 128 in two-dimensions and 4, 8, 16 in three-
dimensions. the horizontal bar is of length 5 from 5 to 10 in the x-direction and of
height and width 1.

The computational time is reduced using an efficient MPI parallelism [4]. The
main difficulties are linked to the multigrid solver, on the one hand because of the
cell-by-cell Gauss-Seidel smoother and not Jacobi smoother and, on the other hand
due to the multigrid itself that uses very coarse grids that can not be computed in
parallel. Nevertheless the computational code can run on 384 cores in 3D with a
strong scalability close to one [4].

The results are presented at Re = 100, Re = 1, 000 and Re = 10, 000 based on
the bar height H for all the numerical simulations to achieve several flow regimes.



694 C. H. Bruneau & S. Tancogne

To insure the reliability of the results, the simulations are performed on six uniform
grids starting from a coarse 16 × h or 16 × h2 cells mesh to a fine 512 × 32h
or 512 × 1024h2 cells mesh on which grid convergence is reached. The numerical
simulations use a time step δt = 2.10−3 that corresponds to the Courant-Friedrichs-
Lewy condition on the finest grid. In addition the simulation time is large enough
for the flow crosses the domain several times in order to get realistic mean flows.
The physical quantities are computed using either a direct computation or the
penalization term. Indeed the drag and lift forces are given by:

FD = −
∫
body

∂xp dX +
∫
body

1
Re∆u dX ≈

∫
body

u

K
dX,

FL = −
∫
body

∂zp dX +
∫
body

1
Re∆w dX ≈

∫
body

w

K
dX.

Then the drag coefficient CD and the lift coefficient CL are computed as usual:

CD = 2FD/S , CL = 2FL/S,

where S is the cross section of the body. In two-dimensions S = H and in three-
dimensions S = H2. The flow rate across a vertical section of the computational
domain, the profile of the velocity and the drag coefficient are presented throughout
the paper.

3. Boundary conditions

In this section the boundary conditions used to solve Navier-Stokes or Stokes equa-
tions in domains with artificial frontiers are sometimes formulated in two-dimensions
for the sake of simplicity. As stated in the introduction there are four types of
boundary conditions in addition to Dirichlet and Neumann boundary conditions.
They are mainly used to determine the flow in ghost cells outside the computational
domain.

• The convective boundary conditions are often written [10,15]:

∂tu+ (U · ∇)u = 0 on Γs,

w = 0 on Γs,
(3.1)

where U is chosen by the user according to the local flow. These conditions are not
well suited on Γs when the frontier is close to the body as the second condition on
w prevent the flow to leave or enter the domain as it is required.

• The Navier-slip or Navier-friction boundary conditions are written [11]:

ν τ ·D(U)n+ γu = ν ∂zu+ γu = 0 on Γs,

w = 0 on Γs,
(3.2)

where ν = 1/Re, τ is the unit tangent vector and γ is a positive friction coefficient.
Once again the slip condition is not convenient.

• The traction boundary condition is written in its simplest form [18]:

σ(U, p)n = σ(Uref , pref )n on Γs, (3.3)
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where the reference flow (Uref , pref ) is often taken in such a way that the second
member is equal to zero. This condition or the complete form used above on Γo can
be used on the spanwise boundaries. Let us point out that when the reference flow
is updated along time it can be necessary to control the flow rate.

• The open boundary conditions can take various forms including Neumann
boundary conditions, second derivative set to zero or a parabolized form that couples
velocity and pressure as:

−1/Re∂2
nu+ ∂τp = −1/Re∂2

zu+ ∂xp = 0 on Γs,

−1/Re∂2
τw + ∂np = −1/Re∂2

xw + ∂zp = 0 on Γs.
(3.4)

These equations as well as the traction one can be coupled to the divergence-free
condition to get the three unknowns (in two-dimensions) in ghost cells.

As it is required that the flow can leave or enter the domain through the spanwise
frontiers, only the two last sets of equations are considered in the following. To
precise how the boundary conditions are really computed in a ghost cell a staggered
cell and its ghost neighbour are represented in Figure (3). Moreover, as there are
Cartesian uniform grids δx = δy = δz = δ and thus some formula are simplified,
the value of u1 is always determined the same way than u0.

i,ki,k
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last cell

i,k+1s

0

i,k

p  u   u   

u   p  u   

w

w

w

i+1,k

Figure 3. Values u0, u1, w0 and p0 in a ghost cell in two-dimensions.

The boundary conditions used for comparison are the following:
• The Neumann boundary condition

u0 = ui,k, w0 = wi,k+1, p0 = pi,k. (3.5)

Eventually w0 can be derived using the divergence free condition as:

w0 = wi,k+1 − (u1 − u0). (3.6)
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This is permissible as the continuity equation is valid everywhere.
• The linear extrapolation

u0 = 2ui,k − ui,k−1, w0 = 2wi,k+1 − wi,k, p0 = 2pi,k − pi,k−1. (3.7)

• The traction and divergence-free conditions with the reference flow (Uref , pref )
taken equal to the flow on the previous cell (Ui,k−1, pi,k−1) just computed by the
cell-by-cell smoother.

u0 =ui,k − (wi,k+1 − wi−1,k+1) + (ui,k − ui,k−1) + (wi,k − wi−1,k)

− δ/4 Re Min(wm−1
i−1,k+1 + wm−1

i,k+1, 0)(u
m−1
i,k − ui,k−1),

w0 =wi,k+1 − (u1 − u0),

p0 =pi,k + 2(u1 − u0)/(Reδ)− 2(ui+1,k − ui,k)/(Reδ)

− 1/4 Min(wm−1
i,k+1 + wm−1

0 , 0)((wm−1
i,k+1 + wm−1

0 )− (wi,k + wi,k+1)),

(3.8)

where the exponent m− 1 stands for the previous iterate in time as the convection
term is treated explicitly.

• The parabolized Stokes equations and divergence-free condition

u0 = ui,k + (ui,k − ui,k−1) + (Reδ)(pi,k − pi−1,k),

w0 = wi,k+1 − (u1 − u0),

p0 = pi,k + (wi+1,k+1 − 2wi,k+1 + wi−1,k+1)/(Reδ).

(3.9)

In some sense the equations (3.7), (3.8) and (3.9) can be seen as variations of the
Neumann boundary conditions (3.5).

4. Numerical results in two-dimensions

The two-dimensional flow around a long bar (5 , 10) × (0 , 1) of height H = 1 is
simulated in the computational domain Ω = (0 , 16)×(0 , h) where h takes the values
h = 4, h = 8, h = 16, h = 32, h = 64 and h = 128. These values correspond to a
blockage of the computational domain by the bar b = 1/h and the case h = 128 is
referred as the reference flow. The study concerns three different Reynolds numbers
Re = 100, Re = 1, 000 and Re = 10, 000 corresponding to three different regimes
as shown in Figure 4. There is a steady solution at Re = 100 and two solutions in
transitions to turbulence at Re = 1, 000 and Re = 10, 000. The steady solution will
be helpful to quantify the convergence with respect to the height of the domain.

Let us recall that the traction boundary condition (3.8) is used on the exit section
of the computational domain. As the reference flow is not known the choice is to
take the flow just computed in the previous cell. If we think of a computation inside
a channel the flow rate at the exit section must be equal to the upstream flow rate.
Now the flow rate of the numerical flow computed in the previous row of cells is not
strictly equal to the flow rate upstream and thus the flow rate can diverge slowly
to another value yielding a mass variation. To avoid this drawback it is required to
control the flow rate downstream at each time step. In a channel it is very easy but
in an open domain like ours there are two choices as the flow on the top frontier is
free to enter or to leave the domain. Either the flow rate downstream is controlled
equal to the flow rate of the entrance section and the top frontier (Q1), or the flow



Far field boundary conditions . . . 697

Figure 4. Vorticity field and pressure of the instantaneous flow by a long bar at Re = 100 (top)
Re = 1, 000 (middle) and Re = 10, 000 (bottom) computed in the largest domain. Are plotted from blue
to red the vorticity field in the interval (-5,5) and in black lines 25 pressure contours between −0.5 and
0.5 for Re = 100, between −2 and 2 for Re = 1, 000 and between −6 and 6 for Re = 10, 000.

rate on the top frontier and downstream is controlled equal to the upstream flow
rate (Q2). That means that for Q1 we set:

Qin = Qupstream +Qtop, Qout = Qdownstream (4.1)

and for Q2 we set:

Qin = Qupstream, Qout = Qtop +Qdownstream. (4.2)

Then the flow rate control is achieved multiplying the velocity on the out part by
the factor Qin/Qout to get the same flow rate than in the in part. The solutions of
Figure 4 are computed with Neumann boundary condition and Q1 control. However
at Re = 100 every boundary condition gives the same steady solution on the largest
domain. For higher Reynolds numbers the stable solution is not steady anymore
and thus the instantaneous solutions cannot be the same. However the mean flow
is the same on the largest domain. In this section the computation of the mean
flow is a very sensitive task and is performed generally using at least 50, 000 time
iterations. Let us point out that, specially in two-dimensions, the flow is strongly
linked to the size and strength of the vortices. Indeed, some events consisting of a
large and strong vortex travelling through the second part of the domain can occur
sometimes. This kind of event can last for thousands of time iterations and change
the mean flow. This is particularly true for transitional flows at Re = 1, 000 for
instance as there are sometimes merging of several vortices. It is thus necessary to
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compute several mean flows to avoid some events and to be careful analysing the
results.

The aim of this work is to find out a boundary condition on ΓS that allows the
flow to leave or to enter the domain. So the first step is to check if the bound-
ary conditions listed in the previous section satisfy this constraint. In Figure 5
are compared the Neumann, the traction, the Neumann with divergence-free, the
extrapolation and the parabolized boundary conditions applied to the smallest do-
main (h = 4) to the reference flow obtain in the largest domain (h = 128). This
comparison is performed with the flow rate all along the domain in the x-direction
for two Reynolds numbers Re = 100 and Re = 1, 000. Thus it is equal to 4 at
the entrance section and should fluctuate further downstream. The results show
that it is not the case for the Neumann with divergence-free boundary condition.
The traction gives a small fluctuation of the flow rate whereas the other boundary
conditions seem to better satisfy our demand although the results are not good. In
particular the parabolized boundary condition does not converge on such a small
domain and the extrapolation converges only at Re = 100.

Figure 5. Comparison of the flow rate on the smallest domain for various boundary conditions at
Re = 100 (left) and Re = 1, 000 (right).

Figure 6. Comparison of the flow rate in the section (0 , 4) of solutions computed in the h = 8 domain
for various boundary conditions at Re = 100 (left) and Re = 1, 000 (right).

To further analyse the behaviour of the flow with respect to the boundary condi-
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tions let us see in Figure 6 the flow rate always in the section (0, 4) but for solutions
computed in a larger but small domain with h = 8. At Re = 100 we see at first sight
that the Neumann boundary condition gives the worst result, that the traction, the
Neumann plus divergence-free and the parabolized boundary conditions give about
the same result and that the extrapolation is almost superimposed to the reference
solution. On the contrary at Re = 1, 000 the Neumann boundary condition without
or with divergence-free give quite poor results, the traction condition is closer to the
reference, the parabolized condition is not stable enough to get a solution and the
extrapolation is this time far to the solution. Let us point out that we use a linear
extrapolation to guess the flow inside the ghost cell. At low Reynolds number there
is a steady solution that evolves in the z-direction almost linearly in the vicinity of
ΓS , which is not the case for higher Reynolds numbers. The same findings are true
on the domain with h = 16. So finally we decide to keep Neumann and traction
boundary conditions and to discard the others.

Figure 7. Comparison of the flow at Re = 100 for various height h of the domain. Are plotted from
blue to red the vorticity field and in black lines the pressure contours. From top to bottom h = 4, h = 8,
h = 16, h = 32, h = 64 and h = 128.

To quantify the convergence with respect to the height h of the domain, we plot
in the domain (0, 16)× (0, 4) the steady solutions at Re = 100 computed for various
h with Neumann boundary condition (see Figure 7). The solution in the smallest
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domain is very far to the reference one as there is a kind of compression due to the
small variation of the flow rate given by the boundary condition. The quality of the
solution increases when h increases to give an almost converge solution at h = 32.
Then the solutions for h = 64 and h = 128 are superimposed. This means that the
convergence is really achieved for a blockage around b = 1/50 and thus a domain
of height h = 50H, which is a lot! This is true for low Reynolds numbers as the
diffusion effect is large, for higher Reynolds numbers it is smaller.

Now to see the influence of the height of the domain h to the quality of the
numerical simulation, the flow rate is plotted always in the same section (0, 4) along
the x-direction whatever the value of h is. The results at Re = 100, Re = 1, 000
and Re = 10, 000 for the Neumann and traction boundary conditions are plotted in
the Figures 8, 10 and 12 respectively. We see at a glance that the solution is always
bad in the smallest domain. Then at Re = 100 the solution for both conditions goes
monotonously closer to the solution as h increases. In addition, except for h = 4,
the profiles at the middle of the bar are almost superimposed to the profile of the
reference solution as shown in Figure 9.

Figure 8. Comparison of the flow rate at Re = 100 in the section (0 , 4) for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier.

At Re = 1, 000 the convergence is not monotonous any more when h increases.
For instance the flow rate is worse for h = 16 than for h = 8 with Neumann
boundary condition. In the same way the flow rate is very close to the reference
flow rate for h = 16 with traction boundary condition whereas it is much less good
for h = 32. The explanation is probably linked to the difficulty to get a good mean
flow because of strong merging of vortices occurring sometimes. Surprisingly this
is not observed at higher Reynolds number (see Figure 12). There are also larger
discrepancies on the profile in the middle of the bar at Re = 1, 000, specially just
above the bar, than for Re = 100 or Re = 10, 000 as shown in Figures 9, 11 and 13.

To summarise the discussion above in two-dimensions, two sets of boundary
conditions are selected: the Neumann boundary condition (3.5) and the traction
boundary condition (3.8). It is hard to say which one gives the best results but
they do not give the same results even on a medium mesh. Indeed if we compare
the results of Figure 10 for h = 32 at Re = 1, 000 we see clearly that the flow
rate for Neumann boundary condition is quite far to the reference for x between
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Figure 9. Comparison of the profile in the middle of the bar at Re = 100 for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier.

Figure 10. Comparison of the flow rate at Re = 1, 000 in the section (0 , 4) for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier.

Figure 11. Comparison of the profile in the middle of the bar at Re = 1, 000 for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier.
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Figure 12. Comparison of the flow rate at Re = 10, 000 in the section (0 , 4) for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier.

Figure 13. Comparison of the profile in the middle of the bar at Re = 10, 000 for various height h
of the domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8)
(right) is used on the top frontier.

8 and 13 and quite close at the exit section whereas the flow rate for traction
boundary condition is very close to the reference until x = 12 and then diverges.
These boundary conditions give converged results only when the blockage of the
computational domain by the bar is around b = 1/50 at low Reynolds numbers. So
it is required to put away the artificial frontier longitudinal to the flow while it is
not necessary downstream with traction boundary condition that conveys properly
the vortices downstream. At high Reynolds numbers good results are achieved with
a higher blockage b ≃ 1/15.

There is another issue concerning the choice of the flow rate control. The results
above are obtained with Q1 control but we propose to compare with Q2 control.
At Re = 100 the results are almost superimposed except for h = 4 with Neumann
boundary condition, thus it is not possible to determine which flow rate control is the
best. At Re = 1, 000 and Re = 10, 000 there are significant discrepancies between
the two controls as shown in Figures 14 and 15. At Re = 1, 000 there are large
differences with Neumann boundary condition whereas the difference occurs only in
the vicinity of the exit section for traction boundary condition. On the contrary at
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Re = 10, 000 there are low differences with Neumann boundary conditions and quite
large differences in the main part of the domain with traction boundary condition.
It appears that with this last boundary condition the Q1 control is more efficient.

Figure 14. Comparison of the flow rate at Re = 1, 000 in the section (0 , 4) for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier associated to Q1 or Q2 flow rate control.

Figure 15. Comparison of the flow rate at Re = 10, 000 in the section (0 , 4) for various height h of the
domain. The Neumann boundary condition (3.5) (left) or the traction boundary condition (3.8) (right)
is used on the top frontier associated to Q1 or Q2 flow rate control.

Another way to see the influence of the flow rate control is given in Table 1 that
shows the mean drag coefficient of the bar when the boundary condition (3.5) or
(3.8) is associated to Q1 or Q2 control. We see that in the smallest domain there is
a significant difference between Neumann and traction boundary conditions results.
For Neumann boundary condition there are quite large discrepancies according to
the flow control but there are much less differences for traction boundary condition.
In the domain with h = 16 the value are already quite close. So it is finally hard
to say which control gives the best results. They seem to yield somehow equivalent
results. Thus the quality of the solution is linked in priority to the distance of the
top frontier ΓS according to the Reynolds number Re. The higher the Re is, the
closer ΓS can be to the bar as the CD value is already correct in the domain with
h = 8 for Re = 10, 000.
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Table 1. Variation of the mean drag coefficient CD of the long bar with respect to the size of the
domain h and the Reynolds number Re for various boundary conditions in two-dimensions. For instance
4-N1 means h = 4 and Neumann boundary condition + flow rate control Q1. The values of the CD in
the largest domain with h = 128 for Re = 100, Re = 1, 000 and Re = 10, 000 are respectively 1.62, 0.86
and 0.14.

Re 4-N1 4-N2 4-T1 4-T2 8-N1 8-N2 8-T1 8-T2 16-N1 16-N2 16-T1 16-T2

100 1.52 1.63 2.06 2.06 1.50 1.50 1.55 1.55 1.57 1.57 1.56 1.56
1,000 1.96 1.58 2.24 2.25 1.21 1.22 1.10 1.10 1.02 0.97 0.91 0.98
10,000 0.90 1.58 0.55 0.56 0.13 0.13 0.13 0.16 0.13 0.14 0.13 0.17

5. Numerical results in three-dimensions

Let us consider in this section the tree-dimensional flow around a long bar (5 , 10)×
(h/2−1/2 , h/2+1/2)×(0 , 1) of section 1 in the computational domain Ω = (0 , 16)×
(0 , h) × (0 , h) where h takes the values h = 4, h = 8 and h = 16. These three
values correspond to a blockage of the computational domain by the bar b = 1/16,
b = 1/64 and b = 1/256. The study concerns three different Reynolds numbers
Re = 100, Re = 1, 000 and Re = 10, 000 corresponding as in two-dimensions to
three different regimes as shown in Figure 16. The drag coefficient of the long bar
CD corresponding to these three regimes is given in Table 2 and the flow rate in the
section (6, 10)× (0, 4) with h = 16 in Figure 17. As in two-dimensions the variation
is stronger at low Reynolds number as the diffusion term is higher.

Table 2. Variation of the mean drag coefficient CD of the long bar with respect to the Reynolds number
Re in three-dimensions.

Reynolds number 100 1,000 10,000
CD 1.41 1.02 0.96

Taking into account the results of the previous section we have tested in three-
dimensions the more relevant boundary conditions. The results of this section con-
cern only Neumann boundary condition (3.5) with control of the flow rate down-
stream with respect to the other sides of the domain (Q1) or with control of the
flow rate on the four open frontiers with respect to the flow upstream (Q2), and
also the traction boundary condition (3.8) with the same two flow rate controls. In
both cases we have to determine in addition to the two-dimensional unknowns, the
unknown v in the y direction with the same formulas. For the traction boundary
condition, this component v is computed in the z direction in the same way than u
and is computed in the y direction using the divergence-free condition.

As in two-dimensions there are large discrepancies of the results with respect
to the size of the domain or the blockage b. Here h = 4 is the smallest size and
corresponds to an upstream flow rate q = 16 and a blockage b = 1/16, h = 8
corresponds to a blockage b = 1/64 and h = 16 corresponds to a blockage b = 1/512
that is large enough to be considered as the reference flow. Figure 18 shows clearly
for two values of the Reynolds number that the solution is almost converged with
h = 8 as the blockage is already low contrarily to two-dimensions. The same
conclusion is reported for the vertical profile through the centre of the bar (see
Figure 19). In addition this figure shows also that the flow at infinity is recovered
much easily at high Reynolds number as there is less dissipation. Both the flow rate
and the profile are computed on the mean solution computed when the regime is
well established on 20, 000 time iterations. In three-dimensions the computation of
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Figure 16. Vorticity field of the instantaneous flow by a long bar at Re=100 (top) Re=1,000 (middle)
and Re=10,000 (bottom) computed in the largest domain in three-dimensions. From blue to red are
represented four vorticity contours with values −2, −2/3, 2/3 and 2.

the mean flow is less sensitive to the vortical structures as there is always a mixture
of many vortical structures coming from various directions. Thus the mean flow is
easier to get.

Let us now compare the boundary conditions. Hopefully the results are the
same on the largest domain whatever the boundary condition is as shown on the
profile in Figure 20. In fact, for high Reynolds number like Re = 10, 000, as the
flow at infinity is recovered closer to the bar it is possible to use the computational
domain with h = 8. It corroborates the fact found in two-dimensions that the
quality of the solution depends on the blockage and the Reynolds number. The
Figure 21 shows clearly that both flow rate controls give the same result as the
curve are superimposed. At low Reynolds number Neumann boundary condition
gives results closer to the reference, for higher one it is about the same.

Another way to quantify the results is to compare the mean drag coefficient of
the long bar with respect to the size of the domain h and the Reynolds number Re
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Figure 17. Comparison of the flow rate in the section (6, 10)× (0, 4) with h = 16 for various Reynolds
number Re in three-dimensions.
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Figure 18. Comparison of the flow rate in the same section for various size of the computational domain.
Flow in three-dimensions at Re = 100 (left) and flow at Re = 10, 000 (right).
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Figure 19. Comparison of the vertical profile through the centre of the bar for various size of the
computational domain. Flow in three-dimensions at Re = 100 (left) and flow at Re = 10, 000 (right).

(see Table 3). Let us first point out that the traction boundary condition does not
converge in the smallest domain at Re = 10, 000. In addition the results for the
other values of the Reynolds number are better with Neumann boundary condition
than with traction one. But the whole results are very close in the larger domains.
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Figure 20. Comparison of the vertical profile through the centre of the bar for various boundary
conditions. Flow in three-dimensions at Re = 100 in the largest domain with h = 16 (left) and flow at
Re = 1, 000 in the intermediate domain with h = 8 (right).
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Figure 21. Comparison of the vertical profile through the centre of the bar for various boundary
conditions. Flow in three-dimensions at Re = 100 (left) and flow at Re = 1, 000 (right) in the smallest
domain with h = 4.

Table 3. Variation of the mean drag coefficient CD of the long bar with respect to the size of the domain
h and the Reynolds number Re for various boundary conditions in three-dimensions. For instance 16-T2
means h = 16 and traction boundary condition + flow rate control Q2.

Re 4-N1 4-N2 4-T1 4-T2 8-N1 8-N2 8-T1 8-T2 16-N1 16-N2 16-T1 16-T2

100 1.43 1.44 1.87 1.87 1.42 1.42 1.48 1.48 1.41 1.41 1.42 1.42
1,000 1.15 1.16 1.20 1.20 1.04 1.04 1.04 1.04 1.02 1.04 1.02 1.02
10,000 1.01 1.01 - - 0.96 0.96 0.96 0.98 0.96 0.95 0.95 0.96

6. Conclusions

In this work far field boundary conditions are tested to simulate the flow around one
long bar set down on a wall in two- and three-dimensions. This work focus on the
longitudinal artificial frontiers where the flow is almost tangent to the boundary.
The study both in two- and three-dimensions shows that there are several boundary
conditions that allow the flow to leave or enter the domain contrarily to Navier-slip
boundary condition. Among these boundary conditions Neumann and traction
boundary conditions give the more stable and reliable results. However at low
Reynolds numbers the extrapolation can be a good choice.

The quality of the solution is linked to the blockage b of the computational
domain by the obstacle in the direction transverse to the flow. It appears that a
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ratio of about b = 1/50 is required to get fully converged results at Re = 100,
which gives a strong constraint in two-dimensions. But this ratio increases with the
Reynolds number and reaches b ≃ 1/15 at Re = 10, 000. For larger values of b there
is still a kind of compression of the flow that increases the drag coefficient of the
body.
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