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Abstract This paper surveys various precise (long-time) asymptotic results
for the solutions of the Navier-Stokes equations with potential forces in bounded
domains. It turns out that the asymptotic expansion leads surprisingly to a
kind of Poincaré-Dulac normal form of the Navier-Stokes equations. We will
also discuss some related results and a few open issues.
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1. Introduction and some historical tidbits

Claude-Louis Navier (1785–1836) and George B. Stokes (1819–1903), of course,
never met Henri Poincaré (1854–1912) and Henri Dulac (1870–1955) as we will
recall in the small historical section below. (For more details, and more generally
for a fascinating account of the history of fluid dynamics, see [19]). However their
mathematical theory of dynamical systems and physical theory of fluid mechanics
have finally met more than a hundred years after their initial contributions.

We will not comment on Stokes and Poincaré who are well-known scientists but
make a few (may be not so well known) remarks on Dulac, and mainly on Navier.

Claude Louis Marie Henri Navier was an “X-Ponts” engineer in the jargon of
Grandes Ecoles, first trained at the Ecole Polytechnique, then at the Ecole des
Ponts et Chaussées, one of the Ecoles d’applications such as the Ecole des Mines
(Augustin Louis Cauchy was an “X-Ponts”, Henri Poincaré was an “X-Mines”). He
was in the main stream of French theoretical continuum mechanics of this time.

A major figure of French Mechanics of this time, Adhémar Barré de Saint-Venant
(1797–1886), also an X-Ponts, was a former student and successor of Navier. Among
many other things, he derived the so-called Saint-Venant system (or shallow water
system). He was the advisor and protector of Joseph Boussinesq (1842–1929) who
made fundamental contributions in Fluid Mechanics, in particular on the theory of
water waves.
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As noticed by Olivier Darrigol in his book [19],

“Navier and other Polytechnicians’ efforts to reconcile theoretical and
applied mechanics had no clear effect on French engineering practice.
Industry prospered much faster in Britain, despite the lesser mathemat-
ical training of its engineers. Some of Navier’s colleagues saw this and
ridiculed the use of transcendental mathematics in concrete problems
of construction. In the mid-1820s, a spectacular incident apparently
justified their disdain. Navier’s chef-d’oeuvre, a magnificent suspended
bridge at the Invalides, had to be dismantled in the final stage of its
construction”.

Actually Navier was probably most famous in his time for the “disaster” of the
pont des Invalides, the first suspended bridge over the Seine river. In fact Navier
had mis-estimated the direction of the force exerted by the chain on the stone.
This could have been corrected easily but the hostile municipal authorities decided
the dismantlement of Navier bridge. Honoré de Balzac is alluding to this incident
(rather ironically) in his novel Le curé de village:

“La France entière a vu le désastre, au coeur de Paris, du premier pont
suspendu que voulut élever un ingénieur, membre de l’Académie des Sci-
ences, triste chute qui fut causée par des fautes que ni le constructeur
du canal de Briare, sous Henri IV, ni le moine qui a bâti le Pont-Royal,
n’eussent faites, et que l’Administration consola en l’appelant au Con-
seil Général (des Ponts et Chaussées). Les Ecoles Spéciales seraient-elles
donc des fabriques d’incapacités? Ce sujet exige de longues observa-
tions”.

(Translation) “All France knew of the disaster which happened in the
heart of Paris to the first suspended bridge built by an engineer, a mem-
ber of the Academy of Sciences, a melancholy collapse cause by blunders
such as none of the ancient engineers, the man who cut the canal at Bri-
are in Henry’s IV time, or the monk who built the Pont Royal-would
have made; but our administration consoled its engineer for his blun-
der by making him a member of the Council general. (of the Ponts et
Chaussées). Are our Ecoles Spéciales producers of incapacities? This
topic deserves lengthy observations”.

According to Saint-Venant however, the dismantlement of the bridge was more
than a local administrative deficiency:

“At that time there already was a surge of the spirit of denigration, not
only of the “savants” but also of science, disparaged under the name of
theory opposed to practice; one henceforth exalted practice in its most
material aspects, and prevented that higher mathematics could not help,
as if, when it comes to results, it made sense to distinguish between the
more or less elementary or transcendent procedures that led to them in
an equally logical manner. Some “savants” supported or echoed these
unfounded criticisms”.
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As an aside, we note that there are some estimates of velocity fields in infinite
dimensional spaces which have useful consequences, e.g. [29].

Navier was nevertheless a great scientist and, coming back to our subject, he
derived what are known as the Navier-Stokes equations in a 1823 Mémoire. Further
(different) derivations are due to Poisson (1831), Saint-Venant (1834) and Stokes
(1843).

The last member of the quartet in title is the least famous of them. Henri
Dulac (1870-1955), a former student of Ecole Polytechnique, was a professor at the
University of Lyon and a corresponding member of the French Academy of Sciences.
He was a specialist of the geometric theory of ordinary differential equations and
developed in particular, after Poincaré, the theory of normal forms.

1.1. The Navier-Stokes equations for viscous, incompressible
fluid flows

We now recall briefly the derivation of Navier-Stokes equations (NSE), based on con-
servation laws and the choice of a constitutive equation. For complete background
on NSE see e.g. [17,28,49,70,71].

We study fluid flows in Euclidean space of dimension n = 2, 3. Let ρ denote the
density of the fluid, and u its velocity.

• Conservation of mass:
∂tρ+ div(ρu) = 0.

We will consider only the case when the density ρ is constant, so that the
conservation of mass reduces to

div u = 0.

We refer to this as the incompressibility condition.

• Conservation of momentum (Newton’s law) for a general fluid:

ρ(∂tu+ (u · ∇)u) = div(−p̃I+T) + f̃ ,

where p̃ is the (scalar) pressure, T is the extra-stress tensor, and f̃ represents body
forces. Here, we use the standard notation u · ∇ =

∑
i ui∂xi .

When T ≡ 0, one obtains the Euler equations (1755).

• Constitutive law: For a Newtonian viscous fluid, T at the present time t is
just proportional to the rate of deformation tensor D(u) = (∇u+(∇u)T )/2 at time
t, that is

T = µD(u),

where µ is the dynamic viscosity coefficient. (For a general non-Newtonian fluid, T
can be a complicated function of the past history of the deformations).

Finally, one obtains the Navier-Stokes equations (NSE)∂tu+ (u · ∇)u− ν∆u+∇p = f,

div u = 0,
(1.1)

where ν = µ/ρ is the kinematic viscosity, p = p̃/ρ, and f = f̃/ρ. For simplicity, we
will just call ν viscosity, p pressure, and f body force.
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The system (1.1) consists of (n + 1) equations for (n + 1) unknowns, namely,
u ∈ Rn and p ∈ R. It will be completed with initial and boundary conditions in our
considerations.

1.2. Functional setting

We consider the following two cases of fluid flows.
The first scenario is when the fluid is confined a smooth, bounded domain Ω of

Rn, and the velocity satisfies the no-slip boundary condition, i.e., u = 0 on ∂Ω. We
set in this case

V = {v ∈ C∞
0 (Ω)n : div v = 0}.

The second scenario is when (u, p) are defined in the whole space Rn, but are
L-periodic, for some L > 0, in all there Cartesian coordinates. Then u and p are
considered as functions on the domain

Ω = Rn/[0, L]n. (1.2)

We usually refer to this Ω as a periodic domain, and say u and p satisfy the
periodicity boundary condition on [0, L]n. By a remarkable Galilean transformation,
we assume, without loss of generality, that u has zero averages over Ω, i.e.,∫

Ω

u(x, t)dx = 0.

We then define the space

V =
{
Rn-valued L-periodic trigonometric polynomial v : div v = 0,

∫
Ω

v dx = 0
}
.

In both cases, we will use the classical spaces:

H = closure of V in L2(Ω)n,

V = closure of V in H1(Ω)n,

with norms

∥u∥H = |u| =
(∫

Ω

|u(x)|2dx
)1/2

, ∥u∥V = ∥u∥ =
(∫

Ω

|∇v(x)|2dx
)1/2

.

Note that notation | · | is used to denote the H-norm and the standard Euclidean
norm on Cn. However, its meaning will be clear in the context.

We denote the standard inner products of L2(Ω)k, for k ∈ N, by the same
notation ⟨·, ·⟩.

The norm in the Sobolev space Hm(Ω) is denoted by ∥ · ∥m. We also denote

Em(Ω) = H ∩Hm(Ω) for m ≥ 0, and E∞(Ω) =

∞∩
m=0

Em(Ω).

One has the Helmholtz-Leray decomposition for the case of no-slip boundary
condition,

L2(Ω)n = H ⊕ {∇φ : φ ∈ H1(Ω)}. (1.3)
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and for the case of periodicity boundary condition,{
v ∈ L2(Ω)n :

∫
Ω

v dx = 0
}
= H ⊕ {∇φ : φ ∈ H1(Ω)}. (1.4)

We define P to be the (Leray) orthogonal projection in L2(Ω)n onto H.
We assume at the moment that (u, p) are classical solutions of NSE. Thanks

to (1.3) and (1.4), we have P (∇p) = 0. With this observation, we can reduce the
unknowns of NSE from (u, p) to u only, by projecting the NSE to the space H.
Having that in mind, we define the Stokes operator A by

Au = −P∆u

(with the ad hoc boundary conditions), and also define the bilinear form

B(v, w) = P [(v · ∇)w].

Assume f is a potential, i.e., f = −∇ψ, then, thanks to (1.3) and (1.4) again,
Pf = 0.

Hence, applying the Leray projection P to the NSE, and using the decomposition
(1.3) or (1.4), we rewrite the NSE (1.1) in the functional form as:

du

dt
+ νAu+B(u, u) = 0,

u(0) = u0,
(1.5)

where u0 is a given initial data in H.
This functional form (1.5) will be the focus of our study in this paper.

1.3. Basic facts

The Stokes operator A is an unbounded, self-adjoint operator in H with domain

D(A) = V ∩H2(Ω)n.

Its spectrum σ(A) consists of an unbounded sequence of real eigenvalues

0 < Λ1 < Λ2 < . . . < Λk < . . . , (1.6)

with corresponding multiplicities m1,m2, . . . ,mk, . . . (See e.g. [13].)
The orthogonal projection in H on the eigenspace of A corresponding to Λj will

be denoted by RΛj .

We denote
S (A) = {0 < µ1 = Λ1 < µ2 < µ3 < . . .},

the additive semi-group generated by the Λk’s.

In the periodic case,

σ(A) = {4π2|k|2/L2 : k ∈ Zn, k ̸= 0},

hence,
Λ1 = 4π2/L2 and σ(A) ⊂ {nΛ1 : n ∈ N}. (1.7)
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By scaling the spatial and time variables, we can further assume, without loss
of generality,

ν = 1 and L = 2π, (1.8)

thus,
Λ1 = 1, σ(A) ⊂ N, and S (A) = N. (1.9)

It has been known since Leray’s fundamental papers ( [50–52]) that

(i) For every initial data u0 ∈ H, problem (1.5) has a (Leray-Hopf) weak solution
u (see e.g. [17,28,49,53,70,71]), that is,

u ∈ C([0,∞);Hw) ∩ L2
loc([0,∞);V ), u′ ∈ L

4/3
loc ([0,∞);V ′),

satisfying (1.5) in the dual space V ′ of V , and the energy inequality

1

2
|u(t)|2 +

∫ t

t0

∥u(τ)∥2dτ ≤ 1

2
|u(t0)|2

holds for t0 = 0 and almost all t0 ∈ (0,∞), and all t ≥ t0.
Above, Hw denotes the space H endowed with the weak topology.
If I is a closed interval in [0,∞), then a weak solution u is regular on I if
u ∈ C(I;V ).

(ii) This weak solution becomes regular on [T0,∞), for some T0 = T0(ν, u0) ≥ 0.

(iii) It is not known whether a (Leray-Hopf) weak solution is unique.

(iv) If u is regular on I = [t0, t1], then u is uniquely determined on I by u(t0).

(v) It is known that any (Leray-Hopf) weak solution u satisfies

1

2

d

dt
|u(t)|2 + ν∥u(t)∥2 ≤ 0 in the distribution sense on (0,∞).

(vi) Any regular solution u on [0,∞) satisfies the equation

1

2

d

dt
|u(t)|2 + ν∥u(t)∥2 = 0 on (0,∞). (1.10)

Because of property (ii) above, and that our goal is to study long-time behavior
of solutions to NSE, we will, without loss of generality, mainly consider regular
solutions on [0,∞).

Let R denote the set of initial data in V leading to global regular solutions.
Then R is an open subset of V , and, particularly, R = V when d = 2.

Obviously, u = 0 is a trivial regular solution on [0,∞). Hence, R contains a
neighborhood of 0. However, proving or disproving that R = V when d = 3 is still
an outstanding open problem.

Here afterward, we will call a regular solution u on [0,∞), that is when u(0) ∈ R,
simply a regular solution.

For a regular solution u, one has from (1.10) and the Poincaré inequality, i.e.,

Λ1|u|2 ≤ ∥u∥2,

that
|u(t)|2 ≤ |u0|2e−2νΛ1t, ∀t ≥ 0.

That is |u(t)|2 must decay exponentially as t→ ∞ at the rate at least 2νΛ1.
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1.4. Aim and outline of the paper

A natural question (raised by P. Lax to C. Foias) is then to ask whether or not
this decay rate is optimal. In an early work, Dyer and Edmunds [21] prove that
any non-trivial, regular solution u has |u(t)|2 also bounded below by an exponential
function of t. However, this answer is far from being definitive in describing the exact
asymptotic behavior of a non-trivial, regular solution. In the following sections, we
present the mathematical developments of the problem which lead to the asymptotic
expansion and normal form theory (for NSE).

The paper is organized as follows. In section 2, the Dirichlet quotient is proved
to converge, as t → ∞ to an eigenvalue of the Stokes operator. The asymptotic
behavior of the regular solutions are studied. The set R is decomposed into non-
linear manifolds Mk’s, which characterize the rate of the decay for the solutions.
In section 3, each regular solution is proved to admit an asymptotic expansion in
terms of exponential decays and polynomials in time. The application to analysis
of the helicity is also presented. In section 4, we review the classical Poincaré-Dulac
theory of normal forms for ordinary differential equations (ODEs). In section 5, it
is shown that the asymptotic expansion reduces to a normal form, which, originally,
is in a Fréchet space with very weak topology. It is then studied in suitable Banach
spaces. In such a weighted normed space, the normalization map is continuous and
the normal form for NSE is a well-posed infinite ODE system. In section 6, the
inverse of the normalization map is written as a formal power series in E∞, an ap-
propriate topological vector subspace of C∞. It is then used to reduce the NSE to
a Poincaré-Dulac normal form on E∞. In section 7, we review more related results
and pose some open questions.

2. Limit of the Dirichlet quotients

By re-writing the energy equality (1.10) in the form

1

2

d

dt
|u|2 + ν

∥u∥2

|u|2
|u|2 = 0,

it is natural to study the limit as t→ ∞ of the Dirichlet quotients

λ(t) =
∥u(t)∥2

|u(t)|2
.

This is the beginning of a long process leading eventually to a normal form of
NSE. One has the following results ( [30–32]).

Theorem 2.1 ( [30–32]). Let u0 ∈ R \ {0}.

(i) limt→∞ λ(t) = Λ(u0) exists and belongs to σ(A).

(ii) limt→∞ eνΛ(u0)tu(t) exists and belongs to RΛ(u0)H.

(iii) There exist analytic submanifolds Mk, k = 1, 2, . . . , of R having codimension
m1 +m2 + . . .+mk such that

R =M0 ⊃M1 ⊃M2 ⊃ . . .
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(iv) Mk is invariant by the nonlinear semi-group S(t) generated by the Navier-
Stokes equation, that is S(t)Mk ⊂Mk, ∀t ≥ 0.

(v) u0 ∈ Mk−1 \Mk if and only if Λ(u0) = Λk, for k = 1, 2, . . .. Consequently,
u0 ∈Mk−1 if and only if Λ(u0) ≥ Λk.

(vi) The tangent space of Mk at 0 is M lin
k , for k = 1, 2, . . . , where

M lin
k = {u0 ∈ V ;RΛ1u0 = . . . = RΛk−1

u0 = 0}.

Proof. (i) We recall elementary estimates for regular solutions and large t:∫ ∞

t

∥u(τ)∥2 ≤ C|u(t)|2,
∫ ∞

t

∥Au(τ)∥2 ≤ C∥u(t)∥2. (2.1)

Let v(t) = u(t)/|u(t)|. Note that |v(t)| = 1 and ∥v(t)∥2 = λ(t). One can derive
a differential equation for λ(t):

1

2

dλ

dt
+ ν|(A− λ)v|2 = −|u|⟨B(v, v), (A− λ)v⟩. (2.2)

It follows that
dλ

dt
+ ν|(A− λ)v|2 ≤ C∥u∥|Au|λ.

Neglecting the second term on the left-hand side, and using Gronwall lemma
together with (2.1), we obtain for sufficiently large t′ > t > 0 that

λ(t′) ≤ λ(t)eC
∫ ∞
t

∥u(τ)∥|Au(τ)|dτ ≤ λ(t)eC
′|u(t)|∥u(t)∥.

Using the fact that |u(t)| and ∥u(t)∥ go to zero as t → ∞, and letting t′ → ∞,
then t→ ∞, we obtain

0 < lim sup
t′→∞

λ(t′) ≤ lim inf
t→∞

λ(t) <∞.

Thus
lim
t→∞

λ(t) = Λ exists and belongs to (0,∞).

By (2.2), (A − λ)v ∈ L2(t,∞). Then there exist tj → ∞ such that (A −
λ(tj))v(tj) → 0 and v(tj) → v̄ in H. Thus Av(tj) → Λv̄. Since A is a closed
operator, this yields v̄ ∈ D(A) and Av̄ = Λv̄. Note also that |v̄| = 1, hence,
Λ ∈ σ(A).

(ii) After this eigenvalue Λ is established, ones can prove in [31, Proposition 1
and Lemma 1] that

∥u(t)∥ ≤ Ce−νΛt, (2.3)

lim
t→∞

∥(I −RΛ)e
νΛtu(t)∥ = 0. (2.4)

It remains to deal with RΛe
νΛtu(t). We have

d

dt
(RΛe

νΛtu(t)) + eνΛtRΛB(u(t), u(t)) = 0.

Hence, for s > t > 0:

eνΛsRΛu(s)− eνΛtRΛu(t) = −
∫ s

t

eνΛτRΛB(u(τ), u(τ))dτ.
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By the exponential decay (2.3) of u(t), we see that the right-hand side goes to
0 as s, t→ ∞. Therefore, by Cauchy’s criterion,

lim
t→∞

eνΛtRΛu(t) exists and belongs to RΛH.

Together with (2.4), this yields (ii).
(iii) The setsMk’s can be defined as level setsMk = Φ−1

k (0), where the functions
Φk’s are as follows. For k = 1, Φ1 : R → RΛ1V is given by

Φ1(v) = RΛ1v −
∫ ∞

0

eΛ1tRΛ1B(S(t)v, S(t)v)dt.

For k ≥ 2, the functions Φk :Mk−1 → RΛk
V is defined by

Φk(v) = RΛk
v −

∫ ∞

0

eΛktRΛk
B(S(t)v, S(t)v)dt.

Then the analyticity ofMk’s results from the analyticity of the mapping (t, v) →
S(t)v which is due to [22].

Remark 2.1. The following remarks are in order.

(a) (L. Tartar) In the case where Ω is only bounded in one direction (so that
Poincaré inequality holds), one has also that the limt→∞ λ(t) = Λ((u0) exists
and belongs to the spectrum of A, which is not necessarily discrete.

(b) One can prove that the rate of decay given by Λ(u0) gives also the decay
rate of higher Sobolev norms, and also the convergence of u(t)etΛ(u0) in all
Hs for any s > 0, see [34, 43]. We refer to [39] for various extensions of
the convergence of the Dirichlet quotients to other situations, in particular
Navier-Stokes and MHD equations on compact Riemannian manifolds.

(c) We recall that for any u0 ∈ H, the NSE possesses a weak solution u which
becomes regular for t sufficiently large. In this case the Dirichlet quotient
λ(t) converges to an eigenvalue Λ(u(·)) of σ(A) that, by lack of uniqueness,
depends a priori on the whole solution u.

(d) The manifolds Mk’s are apparently the only known nonlinear manifolds in-
variant under the the Navier-Stokes flow.

(e) The geometry of parts of the Mk’s that are far from the origin is unknown
(see however below for a specific property in the periodic case).

The invariant manifolds Mk’s can also be characterized as in the next result.

Theorem 2.2 ( [31, Corollary 2]). The necessary and sufficient condition for u0 ∈
Mk−1, or equivalently, Λ(u0) ≥ Λk, with k ≥ 2, is

lim
t→∞

eνΛjtRΛjS(t)u0 = 0 ∀j = 1, 2, . . . , k − 1. (2.5)

Note in (2.5) that it only requires the projection RΛj of S(t)u0, not the whole
S(t)u0.

One has further results on properties of the manifolds Mk’s in the periodic case.
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Theorem 2.3 ( [31, Remark 7], [32, Theorem 2 and Proposition 4]). In the periodic
case, each Mk is a smooth analytic, truly nonlinear manifold in R, and contains a
linear submanifold Lk of infinite dimension. Consequently, Mk is unbounded in V .

Proof. For the nonlinearity, we argue by contradiction. Suppose Mk is linear.
Then it must coincide with its tangential linear manifold at 0, which is M lin

k . To-
gether with the invariance of Mk under the semigroup S(t), it follows that

k∑
j=1

RΛjB(v, v) = 0 whenever v ∈ D(A) such that
k∑

j=1

RΛjv = 0.

By construction of an explicit counter example (see [32]), this fact is shown to be
not true.

The construction of the invariant linear submanifolds Lk’s is based on special
motions of the Navier-Stokes equations in the periodic case that we describe now.

For k = (k1, . . . , kn) ∈ Zn \ {0} such that k1 + . . .+ kn = 0, we consider

u(x, t) = (φ(k · x, t), . . . , φ(k · x, t)) (n times), (2.6)

where φ(y, t) is a scalar function with y, t ∈ R. One can verify that

div u = 0 and (u · ∇)u = 0.

Then any (spatial) L-periodic solution φ of the linear heat equation

∂φ

∂t
− ν|k|2 ∂

2φ

∂y2
= 0

leads to a solution of the NSE of the form u(x, t) in (2.6) and p = constant. Clearly,
such a solution satisfies

∥u(t)∥m ≤ Cme
−ν|k|2t ∀m ≥ 0.

Thus, u(0) ∈Mk if |k|2 > Λk.
Based on the above observation, we set

U = {u ∈ V : u(x) = (φ(k · x), . . . , φ(k · x)), k = (k1, . . . , kn) ∈ Zn,

k1 + . . .+ kn = 0, φ(y) is L-periodic on R}.

Then U ∩M lin
k is an infinite-dimensional submanifold of Mk.

Remark 2.2. The family of manifolds constructed in Theorem 2.3 is extended to
the following more general ones, which are also used to analyze the decay of the
helicity, see [23, 24] and subsection 3.4 below.

Consider the periodic case in R3. Let a be a vector in R3 such that its orthogonal
plane has nontrivial intersection with Z3, this means

a⊥ := {k ∈ Z3,k · a = 0} ≠ {0}.

Define the linear manifold Ma⊥ in V by

Ma⊥ = {u ∈ V : u =
∑
k∈a⊥

ake
ik·x, ak is (complex) collinear to a, for all k ∈ a⊥}.

(2.7)
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For u0 ∈ Ma⊥ , u(t) = e−tAu0 belongs to Ma⊥ for all t ∈ [0,∞) and solves the
linearized NSE 

du

dt
+Au = 0, t > 0,

u(0) = u0 ∈ V.

as well as the NSE (1.5). The fact that the nonlinear term B(u(t), u(t)) vanishes
in this situation can be easily verified. Therefore, Ma⊥ is an invariant linear man-
ifold in R. Clearly, the cardinality of a⊥ is infinite, and hence Ma⊥ is infinite-
dimensional.

Remark 2.3. Regarding the structure of the set R, we have the following remarks.

(a) Since R is an open set, Theorem 2.3 implies that in the periodic case, it
contains an unbounded open subset of V . This fact was apparently unknown
before in the periodic case Also, the construction of the linear manifolds Lk is
explicit. (See [75] for another construction of arbitrary large solutions in the
three-dimensional periodic case).

(b) When Ω is a bounded, open set of R3 (with Dirichlet boundary conditions),
Bondarevsky ( [3]) has proved, by a totally different method, that R contains
a star-shaped, unbounded open subset.

(c) In the case Ω = R3, one can also obtain the global existence of solutions
starting from initial data with small low frequencies but allowing large high
frequencies (oscillations). See Cannone, Meyer and Planchon ( [11]), and
Chemin and Gallagher ( [14,15]).

Remark 2.4. The Dirichlet quotients (interpreted as the ratio of the enstrophy
over the energy) have been used to study geophysical flows, in particular to give a
precise mathematical sense (and justify) the physicists’ selective decay principle:

After a long time, solutions of the quasi-geostrophic equations and/or
the two-dimensional incompressible Navier-Stokes equations approach
those states which minimize the enstrophy for a given energy.

For more details we refer to [55–57,73,74].

Remark 2.5. In relation with [30,31], Kukavica [47], in the 2D periodic case, has
provided upper bounds on the Hausdorff length H1 of the level sets of the vorticity
and the stream function and expressed them for large t in term of the corresponding
eigenvalue Λk.

Remark 2.6. In a totally different context, the Dirichlet quotients have been used
in [18] to study the backward behavior of solutions to the periodic Navier-Stokes
equations with (non-potential) time-independent body forces. More precisely it is
proven there that the set of initial data for which the solution exists for all negative
times and has exponential growth is rather rich, actually it is dense in the phase
space of the NSE, answering positively a question of Bardos-Tartar [2].

Coming back to the study of NSE with potential forces, it has been proven
in [33], by extending a result of Hartman ( [44] chap. IX, th. 6.2) for ODEs, that
the NSE have invariant manifolds with “slow” decay. More precisely,

Theorem 2.4 ( [33]). For any k = 1, 2, . . . there exist an open neighborhood Uk of
0 in R and a submanifold Fk without boundary of Uk such that
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(i) Fk is C1 and analytic outside the origin.

(ii) dimFk = m1 +m2 + . . .+mk = Nk.

(iii) Fk is invariant, i.e. S(t)Fk ⊂ Fk, ∀t ≥ 0.

(iv) The tangent space to Fk at the origin is (RΛ1 + . . .+RΛk
)H.

(v) v ∈ Fk \ {0} implies Λ(v) ≤ Λk.

Corollary 2.1. Mk ∩ Fk+1 is an invariant submanifold of Uk, of dimension mk

that satisfies

(i) Λ(u) = Λk for all u ∈Mk ∩ Fk+1 \ {0}.
(ii) Mk+1, Fk−1 and Mk ∩ Fk+1 are transverse at 0.

Remark 2.7. (a) While the manifolds Mk’s are unique, this is not the case of
the Fk’s.

(b) In the 2D-periodic case, one can take F1 = RΛ1H. This results from the fact
that then the function t 7→ ∥S(t)v∥2/|S(t)v|2 is decreasing for any nonzero
v ∈ V. It is a consequence of (2.2) and the orthogonal properties

⟨B(u, u), u⟩ = 0 and ⟨B(u, u), Au⟩ = 0,

which make the right-hand side of (2.2) vanish.

(c) For some specific examples (such as the viscous Burgers equation or a nonlocal
version of it), one can prove that the manifolds Fk’s are global.

Remark 2.8. We refer to [10] for construction of invariant manifolds in a rather
general setting, and, in particular, to its Appendix B5 for illuminating comments
on slow manifolds.

Remark 2.9. The nonlinear spectral manifolds have been used in [54] to study
asymptotic stability issues for the periodic two-dimensional Navier-Stokes equa-
tions.

The results in Theorem 2.1 suggest that one can go further and look for an
asymptotic expansion of the solution. This will eventually lead to the normal form.

We first introduce a technical notion on the spectrum of A. More generally,

Definition 2.1. Let A be a, possibly unbounded, linear operator in a space X with
spectrum σ(A).

(i) A resonance in σ(A) is a relation of the type

a1Λ1 + a2Λ2 + . . .+ akΛk = Λ, (2.8)

for some Λ,Λ1,Λ2, . . . ,Λk ∈ σ(A), and some positive integers a1, a2, . . . , ak
with a1 + a2 + . . .+ ak ≥ 2.

(ii) If Λ ∈ σ(A) satisfies (2.8), then we say Λ is resonant.

(iii) If σ(A) has a resonance then we say it is resonant, otherwise nonresonant.

(iv) In case A is the Stokes operator with the spectrum described in (1.6), and
Λ = Λk+1 for some k ≥ 1, then (2.8) is equivalent to

a1Λ1 + a2Λ2 + . . .+ akΛk = Λk+1, for some a1, a2, . . . , ak ∈ N ∪ {0}.
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We note that the periodic boundary conditions on [0, L]n always lead to reso-
nances because Λ2 = 2Λ1. On the other hand, for periodic boundary conditions
on general cubes [0, L1]× [0, L2]× [0, L3], the spectrum of the Stokes operator A is
non-resonant for a dense set of periods (L1, L2, L3) ∈ (0,∞)3.

It has been recently proven ( [16]) that in the case of Dirichlet boundary con-
ditions, the spectrum of A is non-resonant generically with respect to the domain.
More precisely let D3

l be the set of bounded domains in R3 with Cl boundary
equipped with a suitable topology. For any Ω ∈ D3

l we denote by D3
l (Ω) the Ba-

nach manifold obtained as the set of images (Id + u)(Ω) by u ∈ W l+1,∞(Ω,R3)
which are diffeomorphic to Ω.

The main result in [16] is that generically with respect to Ω ∈ D3
5 the spectrum

of A is non-resonant, in the sense that the set of domains in D3
5(Ω) for which the

non-resonance property holds contains an intersection of open and dense subsets of
D3

5(Ω). This result is established as a consequence of the fact that generically with
respect to Ω ∈ D3

4, the eigenvalues of A are simple.

3. The asymptotic expansion

In this section we obtain asymptotic expansions, as time tends to infinity, for regular
solutions of NSE. These expansions are of the following type.

Definition 3.1. Let X be a real vector space.
(a) An X-valued polynomial is a function t ∈ R 7→

∑d
n=1 ant

n, for some d ≥ 0,
and an’s belonging to X.

(b) When (X, ∥ · ∥) is a normed space, a function g(t) from (0,∞) to X is said
to have the asymptotic expansion

g(t) ∼
∞∑

n=1

gn(t)e
−αnt in X,

where (αn)
∞
n=1 is a strictly increasing sequence of positive numbers, gn(t)’s are

X-valued polynomials, if for all N ≥ 1, there exists εN > 0 such that∥∥∥g(t)− N∑
n=1

gn(t)e
−αnt

∥∥∥ = O(e−(αN+εN )t) as t→ ∞.

Throughout, A is the Stokes operator.

3.1. The non-resonant case

Assume σ(A) is non-resonant.

Theorem 3.1 ( [34, Theorem 2]). Let u be a regular solution. For each N ∈ N,
one has the expansion in H:

u(t) =Wµ1e
−νµ1t +Wµ2e

−νµ2t + . . .+WµN
e−νµN t + vN (t), ∀t > 0,

where Wµj =Wµj (u0) ∈ E∞(Ω) ∩ V for j = 1, . . . , N , and

vN ∈ C([0,∞;V ) ∩ L2
loc(0,∞;D(A)) ∩ C∞([t0,∞); E∞(Ω) ∩ V ), ∀t0 > 0. (3.1)

Moreover,
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(i) ∥vN (t)∥m = O(e−ν(µN+ϵN )t), for some ϵN > 0, m = 0, 1, 2, . . ..

(ii) RΛjWΛj =WΛj for Λj ≤ µN .

(iii) For µj = α1Λ1+. . .+αj−1Λj−1, with α1+. . .+αj−1 ≥ 2, Wµj is a polynomial
of WΛ1 , . . . ,WΛj−1 which is homogeneous of degree ≤ α1 in WΛ1 , of degree
≤ α2 in WΛ2 , . . ., of degree ≤ αj−1 in WΛj−1 . More precisely, one has in this
case

ν(A− µjI)Wµj +
∑

µi+µk=µj

B(Wµi ,Wµk
) = 0.

Remark 3.1. It is clear that the case Wµ1 =Wµ2 = . . . =Wµj−1 = 0 and Wµj ̸= 0
corresponds to µj = Λ(u0).

The rather technical proof is by induction on N, see details in [34].

3.2. The resonant case

Assume σ(A) is resonant.

Theorem 3.2 ( [34, Theorem 4]). Let u be a regular solution with initial data
u0 ∈ R. For any N ∈ N, one has the asymptotic expansion in H:

u(t) =Wµ1(t)e
−νµ1t +Wµ2(t)e

−νµ2t + . . .+WµN
(t)e−νµN t + vN (t), ∀t > 0,

where Wµj (t) =Wµj (t, u0) is a V ∩ E∞(Ω)-valued polynomial in t, and vN satisfies
(3.1). Moreover,

(i) ∥vN (t)∥m = O(e−ν(µN+ϵN )t), for some ϵN > 0, m = 0, 1, 2, . . ..

(ii) d0j = deg Wµj ≤ j − 1, j = 1, . . . , N.

(iii) If Λj ≤ µN is a non-resonant eigenvalue, then WΛj is constant in t and
RΛjWΛj =WΛj .

(iv) If µj ≤ µN is not a non-resonant eigenvalue, thenWµj (t) satisfies the equation

dWµj (t)

dt
+ ν(A− µj)Wµj (t) +

∑
µl+µk=µj

B(Wµl
(t),Wµk

(t)) = 0, ∀t ∈ R.

(v) If Λj is a resonant eigenvalue, one has

deg WΛj ≤ max
µl+µk=Λj

(d0l + d0k) + 1.

Moreover, RΛk
WΛj (t) for k ̸= j, and the coefficients of order ≥ 1 in RΛjWΛj (t)

are obtained from RΛ1WΛ1(0), . . . , RΛj−1WΛj−1(0), via successive integrations
of explicit elementary functions.

(vi) If µj /∈ σ(A), Wµj (t) is obtained from RΛ1WΛ1(0), . . . , RΛkj
WΛkj

(0), via suc-

cessive integrations of elementary explicit functions, where

Λkj = max {Λ ∈ σ(A); Λ < µj}. (3.2)

One has also deg Wµj = d0j ≤ supµl+µk=µj
(d0l + d0k).
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Proof. The proof is also technical and by induction on N. We merely sketch the
main steps for (i) only.

• First step. We recall that

∥u(t)∥ = O(e−νΛ1t).

Ones can prove the limit in V :

lim
t→∞

eνΛ1tRΛ1u(t) = ξ1 ∈ RΛ1H,

and then establish

eνΛ1t∥(I −RΛ1)u(t)∥m = O(e−δt) for some δ > 0, ∀m ≥ 0.

• Induction step. Let vN (t) = u(t)−
∑N

j=1Wµj (t)e
−νµjt. Assume

∥vN (t)∥m = O(e−δt) for some δ > 0, ∀m ≥ 0.

Write the equation for wN = eνµN+1tvN (t) as

dwN

dt
+ (A− µN+1)wN +

∑
µℓ+µj=µN+1

B(Wµℓ
(t),Wµj (t)) = hN (t),

where
∥hN (t)∥m = O(e−δt) for some δ > 0, ∀m ≥ 0.

We apply the projector RΛk
and obtain the equation for wN,k = RΛk

wN :

dwN,k

dt
+ (Λk − µN+1)wN,k + pN,k(t) = RΛk

hN (t), (3.3)

where pN,k is a polynomial in t.
This equation is an ODE of the type:

dw

dt
+ αw + p(t) = g(t) = O(e−δt) in RΛk

H,

where p(t) is a polynomial. When either α ≥ 0, or α < 0 with limt→∞(eαtw(t)) = 0,
there exists a polynomial solution q(t) of

dq

dt
+ αq + p(t) = 0

such that
|w(t)− q(t)| = O(e−δ′t) for some δ′ ∈ (0, δ).

Using this fact we approximate wN,k in (3.3) by a polynomial qN+1,k ∈ RΛk
H.

We then define WµN+1
(t) =

∑∞
k=1 qN+1,k(t). The function WµN+1

(t) is proved to
be a polynomial and satisfies

∥wN (t)−WµN+1(t)∥m = O(e−εt) for some ε > 0, ∀m ≥ 0.

This implies

∥vN (t)−WµN+1
(t)e−µN+1t∥m = O(e−(νµN+1+ε)t), ∀m ≥ 1,

which proves the induction step.
• Note that, in dealing with the higher norms ∥ · ∥m, the proof in [34] estimates

∥d(j)u/dtj∥m for all j ≥ 1.
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Remark 3.2. The first coefficient Wµj (t) which is not identically zero in the ex-
pansion corresponds to µj = Λ(u0). In this case it is constant in t and belongs to
RΛ(u0)H.

Notation. Based on Theorems 3.1 and 3.2, and according to Definition 3.1, we
have

u(t) ∼
∞∑
j=1

Wµj (t)e
−νµjt in Hm(Ω)n, ∀m ∈ N,

which we will simply write

u(t) ∼
∞∑
j=1

Wµj (t)e
−νµjt. (3.4)

3.3. The asymptotic expansion in Gevrey spaces

Theorem 3.2 has been recently improved in [45] where it is proved in particular
that the asymptotic expansion in the 3D-periodic case actually holds in all Gevrey
classes.

Consider the periodic case (1.2) with n = 3 and assume (1.8). Recall that one
has the properties (1.9). We first describe the relevant Gevrey classes.

For α, σ ∈ R, and u =
∑

k∈Z3\{0} û(k)e
ik·x, we define

Aαu =
∑

k∈Z3\{0}

|k|2αû(k)eik·x,

and the Gevrey class

Gα,σ = D(AαeσA
1/2

) = {u ∈ H; |u|α,σ
def
= |AαeσA

1/2

u| <∞},

so that the domain of Aα is D(Aα) = Gα,0. Also D(A0) = H, D(A1/2) = V.

The next theorem improves Theorem 3.2 for the periodic case for any weak
solution.

Theorem 3.3 ( [45, Theorem 1.1]). The expansion in Theorem 3.2 holds in any
Gevrey class Gα,σ with α, σ > 0. More precisely, for any (Leray-Hopf) weak solution
u of the NSE, there exist polynomials qn’s in t valued in V such that if α, σ > 0 and
N ≥ 1 then

|u(t)−
N∑

n=1

qn(t)e
−nt|α,σ = O(e−(N+ϵ)t) as t→ ∞, for any ϵ ∈ (0, 1).

By working with the Gevrey norms, the proof in [45] avoids the estimates of
∥d(j)u/dtj∥m for all j ≥ 0 and m ≥ 0.

Before moving to the normal form theory for the NSE, we review other applica-
tions of the Dirichlet quotients techniques and asymptotic expansions.



Navier and Stokes meet Poincaré and Dulac 743

3.4. Application: asymptotic behavior of the helicity

It turns out that the techniques developed to study the Dirichlet quotients can be
used to obtain information on the asymptotic behavior of the helicity for Navier-
Stokes equations with potential forces. This is the object of the papers [23, 24].
We will focus on the results of [23] where the (3D, periodic) deterministic case is
considered. (Interested readers can read [24] which deals with the statistical case).

For a regular solution u of the NSE, the helicity is a scalar quantity defined by

H(t) =

∫
Ω

u(x, t) · ω(x, t)dx, where ω = curl u.

In the inviscid case (ν = 0) the invariance of the helicity was noticed by
Moreau [62]. The first thorough study of the helicity and of its density for inviscid
incompressible flows was carried out by Moffatt [60], who gave in particular a con-
nection of the helicity to the topological invariants and dynamics of the vortex tubes
as well as the first examples of physically relevant fluid flows with non-zero helicity.
There is a general agreement that helicity plays an important role in magneto-hydro
dynamics, but not in the dynamics of neutral flows (that is, solutions of the Eu-
ler or the Navier-Stokes equations). However, theoretical, empirical and numerical
evidence indicate that the helicity can provide insights into the nature of the fluid
flows, at least in the case when the viscosity is small and this motivates the present
study.

In the periodic case with our choice of Ω in (1.2) (n = 3), we recall from (1.7) that
the first eigenvalue of the Stokes operator A is Λ1 = 4π2/L2, and the other ones are
among nΛ1, with n ∈ N. The previous results on the limit of the Dirichlet quotients
together with Cauchy-Schwarz inequality imply that the helicity of a regular solution
tends to zero as t→ ∞, at least with a rate 2νΛ1n0, where n0 depends on the initial
data. However, due to possible changes of sign and cancellations in u·ω, this does not
imply that it has the same decay rate 2νΛ1n0, as that of the energy. In particular,
it was not known whether the helicity could change sign or vanish infinitely times
as t→ ∞. An answer to those questions is found in [23].

We further define related quantities

E(t) = 1

2

∫
Ω

|u(x, t)|2dx (kinetic energy),

F(t) =

∫
Ω

|ω(x, t)|2dx (rate of energy dissipation/viscosity),

I(t) =
∫
Ω

ω(x, t) · (∇× ω(x, t))dx.

These entities satisfy the following (balance) equations:

d

dt
E(t) + νF(t) = 0,

1

2

d

dt
H(t) + νI(t) = 0.

We now assume (1.8), and recall that (1.9) holds true.

Theorem 3.4 ( [23, Theorem 3.1]). For any regular solution of the NSE,
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(i) Either the helicity becomes non-zero and decays as tde−2h0t, where d ≥ 0 and
h0 are integers depending on u0 with

lim
t→∞

I(t)
H(t)

= h0.

(ii) Or it is identically zero.

Proof. Using asymptotic expansion of u, we derive for the helicity that

H(t) ∼
∞∑
j=1

ϕj(t)e
−jt,

where the ϕj ’s are polynomials in t ∈ R.
If one of ϕj ’s is not a zero polynomial, then we obtain case (i). Otherwise, H(t)

decays to zero, as t → ∞, faster than any exponential functions. This fact itself
cannot yield conclusion for case (ii). More properties of the solution u and helicity
H are needed. For those, we complexify the NSE in time and denote the resulting
solution and helicity by u(ζ) and H(ζ), for the complex time ζ ∈ C. These functions
are proved to be analytic and bounded in a domain E which, see [23, Propositions
8.3 and 8.4], contains (0,∞) and an open set

t0 +D, (3.5)

where t0 is a certain positive time, and

D = {τ + iσ ∈ C : τ > 0, |σ| <
√
2τeατ} (3.6)

for some positive constant α. Then, see [25, Lemma B.2], the transformation

φ(ζ) = ζ − 1

α
log(1 + αζ) (3.7)

conformally maps D to a set containing the right half plane H0. Moreover,

φ([0,∞)) = [0,∞).

Define the function Ht0(ζ) = H(t0+ ζ). We have Ht0 ◦φ−1 is analytic, bounded
on H0 and, see [23, Lemma 8.5], satisfies

lim sup
0<η→∞

eβη|(Ht0 ◦ φ−1)(η)| ≤ lim sup
0<ζ→∞

eβζ |Ht0(ζ)| = 0 ∀β > 0.

Then applying Phragmen-Linderloff type estimates, see [23, Proposition C.1],
we infer that (Ht0 ◦φ−1)(η) = 0 for all η ∈ H0. This implies H(ζ) = 0 on the open,
non-empty set D∗ = t0 + φ−1(H0), which, by analyticity, yields that H(t) = 0 for
all t ∈ (0,∞).

The next theorem shows that the case where the helicity is non-zero is generic.

Theorem 3.5 ( [23, Theorem 3.2]). Let R1 and R0 be the sets of initial data
u0 ∈ R corresponding to cases (i) and (ii) in Theorem 3.4, respectively. Then R1

is open and dense in R while R0 is closed and contains an infinite union of linear,
closed infinite dimensional manifolds.
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The asymptotic decay of helicity is precisely described in the next result.

Theorem 3.6 ( [23, Theorem 3.4]). Let u0 ∈ R \ {0} and n0 = Λ(u0). Then

lim
t→∞

H(t)

|u(t)|2
= α0, where α0 ∈ [−n0, n0].

Moreover, for any n ∈ σ(A) and α ∈ [−
√
n,

√
n], there exists u0 ∈ R such that

the corresponding solution u satisfies

Λ(u0) = n and lim
t→∞

H(t)

|u(t)|2
= α.

Note that one has the norm relation ∥u(t)∥ = |ω(t)|, hence,

Λ(u0) = lim
t→∞

λ(t) = lim
t→∞

∥u(t)∥2

|u(t)|2
= lim

t→∞

|ω(t)|2

|u(t)|2
.

If α0 ̸= 0 in the previous theorem, one is in case (i) of Theorem 3.4 (helicity
decays) with d = 0 and h0 = n0 ∈ σ(A). The situation where α0 = 0 is considered
in the next theorem.

Theorem 3.7 ( [23, Theorem 3.5]). For any n ∈ σ(A) and M > 0, there exists an
initial data u0 ∈ R such that one is in case (i) of Theorem 3.4 with n0 = n and
h0 ≥ n0 +M, and such that

H(t)

|u(t)|2
= O(e−2Mt) when t→ ∞.

Moreover, there exist solutions whose helicity satisfies the condition

lim
t→∞

H(t)t−de2h0t exists and is not zero,

where d > 0 or h0 is not an eigenvalue of A.

Comments on the proofs of Theorems 3.5–3.7.

• The properties of the set R0 of initial data leading to an identically zero
helicity result from a study of the spectrum of the curl operator and of a
global stability result of NSE in 3D ( [66]).

• Examples of linear submanifolds of R0 are, among others, the family Ma⊥

presented in Remark 2.2.

4. The Poincaré-Dulac theory of normal forms

This section reviews very briefly the Poincaré-Dulac theory of normal forms. This
is, of course, a classical topic in dynamical systems, initiated by Poincaré and, later,
Dulac (see [20, 65]) to analyze the dynamics of a nonlinear system of ODEs in the
neighborhood of a singular point. The theory of normal forms for finite dimensional
dynamical systems has tremendously grown since and we refer for instance to the
books [1, 8, 9] for a modern treatment.

The next theorem is extracted from Poincaré’s thesis (1879).
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Theorem 4.1 (Poincaré’s thesis 1879 [64]). If the eigenvalues of the matrix A are
nonresonant, the equation

dx

dt
+Ax+

∞∑
d=2

ϕ[d](x) = 0, (4.1)

where each ϕ[d] is a homogeneous polynomial of degree d in Rn, reduces to the linear
equation

dy

dt
+Ay = 0

by a formal change of variable

x = y +
∞∑
d=2

ψ[d](y), (4.2)

where each ψ[d] is a homogeneous polynomial of degree d.

Retrospectively the following extract of Bonnet and Darboux report on Poincaré’s
thesis (see [42] page 331) is somewhat amazing:

... Quelques lemmes de l’introduction ont aussi paru dignes d’intérêt. Le
reste de la thèse est un peu confus et prouve que l’auteur n’a pu encore
parvenir à exprimer ses idées d’une manière claire et simple. Néanmoins
la Faculté tenant compte de la grande difficulté du sujet et du talent qu’a
montré M. Poincaré lui a conféré avec trois boules blanches le grade de
docteur.

(Translation) ... the remainder of the thesis is a little confused and
shows that the author was still unable to express his ideas in a clear
and simple manner. Nevertheless, considering the great difficulty of the
subject and the talent demonstrated, the faculty recommends that M.
Poincaré be granted the degree of Doctor with all privileges.

The resonant case was treated in Dulac’s thesis (1903).

Definition 4.1. Suppose an n × n matrix A has eigenvalues λ1, . . . , λn and cor-
responding eigenvectors ξ1, . . . , ξn. For each x ∈ Rn, let xi be its coordinate with
respect to ξi. A monomial xα1

1 xα2
2 . . . xαn

n ξk of degree two or higher is called resonant
if

λk = α1λ1 + α2λ2 + . . .+ αnλn.

Theorem 4.2 (Dulac [20]). The equation (4.1) reduces, by a formal change of
variable (4.2), to the canonical form

dy

dt
+Ay +

∞∑
d=2

Θ[d](y) = 0,

where all monomials in each Θ[d] are resonant.
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5. A normalization map and a normal form for NSE

There have been many important works concerning the use of normal forms for
nonlinear partial differential equations, starting from the seminal paper of Shatah
[68] and it is outside the scope of the present paper to review them. Let us just
emphasize that they essentially aimed to reducing a quadratic nonlinear dispersive
partial differential equation to a cubic one in order to use the dispersive estimates
to prove the existence of global small solutions. On the other hand, our normal
form for the Navier-Stokes equations is obtained as a by-product of the asymptotic
expansion.

More precisely, one can use the generating part of the asymptotic expansion to
construct a normalization of the NSE.

We first define the Fréchet space

SA = RΛ1H ⊕RΛ2H ⊕ . . .

endowed with the topology of convergence of components. The Stokes operator A
extends trivially to SA.

5.1. The non-resonant case

Assume σ(A) is non-resonant.

Theorem 5.1 ( [34, Theorem 3, Corollaries 1 and 2]). Define the mapping W :
R → SA by

W (u0) =WΛ1(u0)⊕WΛ2(u0)⊕ . . . for u0 ∈ R.
Then:

(i) W is analytic and one-to-one.

(ii) W linearizes the NSE in the sense

W (u(t)) = e−νAtW (u0), ∀u0 ∈ R, ∀t ≥ 0.

(iii) u0 ∈Mk if and only if the first k components of W (u0) vanish.

In this non-resonant case, v(t) = W (u(t)) is, thanks to (ii), a solution of the
linear Navier-Stokes equations in the large space SA, i.e.,

dv

dt
+Av = 0. (5.1)

Thus, the mapping W transforms the (nonlinear) NSE (1.5) to the linear one
(5.1), which is the case of Theorem 4.1. Therefore, we call W a normalization map,
even though it is not a formal series.

5.2. The resonant case

Assume σ(A) is resonant. In view of the structure of the asymptotic expansion in
this case, considering the following mapping W is natural.

Theorem 5.2 ( [34, Theorem 5]). The mapping W : R → SA given by

W (u0) = RΛ1WΛ1(0, u0)⊕RΛ2WΛ2(0, u0)⊕RΛ3WΛ3(0, u0)⊕ . . . for u0 ∈ R,

is analytic and one-to-one.



748 C. Foias, L. Hoang & J.-C. Saut

We will see that this mapping W also plays the role of a normalization map.
First, we find important polynomials that are essential in transforming the NSE
into a normal form.

LetWj(u0) denote the j-th component ofW (u0), that is,Wj(u0) = RΛjWΛj (0, u0).
For j ∈ N, let kj ∈ N be determined by Λkj = µj if µj ∈ σ(A), or by (3.2)

otherwise.

Lemma 5.1 ( [34, Lemma 7]). For every j = 1, 2, 3, . . ., there exists a multilinear
function Pj, defined on RΛ1H ⊕ . . .⊕RΛkj

H, depending on σ(A), B, ν, such that

Wµj (u0) = Pj(W1(u0),W2(u0), . . . ,Wkj (u0)).

According to Lemma 5.1, each function Pj , for j = 1, 2, 3, . . . , is a polynomial
with values in E∞ ∩ V (that can be explicitly constructed by induction), defined
on RΛ1H ⊕RΛ2H ⊕ . . .⊕RΛkj

H.

These polynomials have the following supplementary properties [34, Lemma 7]:

• If M(x1, x2, .., xkj ) is a monomial in Pj(x1, . . . , xkj ) of degree m1, . . ., mkj in
x1,. . ., xkj respectively, then

m1Λ1 + . . .+mkjΛkj = µj . (5.2)

• Furthermore, if µj is an eigenvalue Λk, then kj = k and

Pj(x1, . . . , xk) = xk + higher order terms in x1, . . . , xk−1.

With these polynomials Pj ’s, we are ready to rewrite the NSE under the trans-
formation W (u(t)).

Theorem 5.3 ( [34, Theorem 6]). Let u0 ∈ R and u(t) = S(t)u0 be the correspond-
ing global solution of the NSE. The (SA-valued) function v(t) = W (u(t)) satisfies
the equation

dv(t)

dt
+ νAv(t) + B(v(t)) = 0 in SA, (5.3)

where, for v = v1 ⊕ v2 ⊕ . . . ∈ SA, B(v) = (Bk(v))
∞
k=1 ∈ SA with

Bk(v) =
∑

µl+µj=Λk

RΛk
B(Pl(v1, . . . , vkl

),Pj(v1, . . . , vkj )),

where the polynomials Pl and Pj are defined as in Lemma 5.1.

From the relation (5.2), one can prove also that each monomial in B(v) is reso-
nant, i.e., if M(v1, v2, .., vk), for some k ∈ N, is a (nonzero) monomial in B of degree
m1, . . . ,mk in v1, . . . , vk respectively, and M ∈ RΛH for some Λ ∈ σ(A), then

m1Λ1 + . . .+mkΛk = Λ. (5.4)

Thus, W transforms NSE (1.5) to (5.3), which satisfies the resonance condition
as in Theorem 4.2. Therefore, we, again, callW a normalization map, and equation
(5.3) a normal form of NSE.

Although the normal form (5.3) is nonlinear in SA, it can be solved by successive
integration of an infinite set of non-homogeneous linear differential equations in
RΛk

H, k = 1, 2, . . . , each one having an already known non-homogeneous part.

Remark 5.1. Minea ( [59]) shows that this type of normalization, when applied
to ODEs, is a normalization in the sense of Bruno ( [6, 7]).
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5.3. Further results in the 3D periodic case

The papers [25,26] aim to answer the following questions.

• When does the asymptotic expansion actually converge?

• In what natural normed spaces is the normal form a well-behaved infinite-
dimensional system of ODEs?

• What is the range of the normalization map?

Partial answers to those questions are established in the 3D periodic case,
namely:

• In paper ( [25]): Construction of a suitable Banach space S⋆
A ⊂ SA on which

the normal form is a well-posed system near the origin. The norm ∥ū∥⋆ of
ū = (un)

∞
n=1 ∈ S⋆

A is

∥u∥⋆ =

∞∑
n=1

ρn∥∇un∥L2(Ω), (5.5)

where (ρn)
∞
n=1 is a sequence of positive weights.

• In paper ( [26]): choice of a suitable set of weights ρn such that the normal-
ization map W : R → S⋆

A is continuous and such that the normal form of the
NSE is well-posed in the entire space S⋆

A.

We consider thus the periodic case in R3 with the standard setting (1.2), (1.8),
(1.9) for dimension n = 3.

For N ∈ N, we denote by RN the projection from H onto the eigenspace of A
corresponding to N in case N ∈ σ(A), and set RN = 0 in case N ̸∈ σ(A).

We note that this definition of RN is only different from that in subsection 1.3
by the change of the index. It aims to unify calculations and make them more
efficient in lengthy proofs.

The definitions of polynomials Pj ’s and the normal form (5.3) can be expressed
more explicitly as follows. We recall that the asymptotic expansion (3.4) for a
regular solution u of the NSE with initial data u0 ∈ R is

u(t) ∼
∞∑
j=1

qj(t)e
−jt,

where qj(t)’s are polynomials in t with values in V, and are unique polynomial
solutions of the following ODEs

q′j(t) + (A− j)qj(t) + βj(t) = 0, t ∈ R, Rjqj(0) =Wj(u0),

with
β1(t) = 0, βj(t) =

∑
k+l=j

B(qk(t), ql(t)), for j > 1.

For ξ = (ξn)
∞
n=1 ∈ SA arbitrary, the polynomial solutions of the preceding

system with initial conditions Rjqj(0) = ξj are explicitly given by the recursive
formula:

qj(t, ξ) = ξj −
∫ t

0

Rjβj(τ)dτ +
∑
n≥0

(−1)n+1(A− j)−n−1 d
n

dtn
(I −Rj)βj , j ∈ N,
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where
(A− j)−n−1u =

∑
|k|2 ̸=j

ak
(|k|2 − j)n+1

eik·x,

for u =
∑

|k|2 ̸=j ake
ik·x ∈ (I −Rj)H.

The SA-valued function ξ(t) = (ξj(t))
∞
j=1 = (Wj(u(t))

∞
j=1 = W (u(t)) satisfies

the system of ODEs :
dξ1(t)

dt
+Aξ1(t) = 0,

dξj(t)

dt
+Aξj(t) +

∑
k+l=j

RjB(Pk(ξ(t)),Pl(ξ(t))) = 0, j > 1.
(5.6)

Above, Pj(ξ) = qj(0, ξ) for ξ ∈ SA and j ≥ 1. Then each function Pj(ξ), for
ξ = (ξn)

∞
n=1, is a V-valued polynomial in the variables ξ1, ξ2, . . . , ξj , each of which

belongs to an finite dimensional space. For instance,

P1(ξ) = ξ1, P2(ξ) = ξ2 − (A− 2)−1(I −R2)B(ξ1, ξ1).

We define B = (Bj)
∞
j=1 where

B1(ξ) = 0, and Bj(ξ) =
∑

k+l=j

RjB(Pk(ξ),Pl(ξ)) for j > 1.

We rewrite the system (5.6) in a vectorial form in SA as

dξ

dt
+Aξ + B(ξ) = 0. (5.7)

Ones can verify that each monomial in B satisfies the resonance condition, see
(5.4). Therefore, (5.7) is a normal form of NSE in SA under the transformation
ξ =W (u).

The solution of the normal form (5.7) with initial data ξ0 = (ξ0n)
∞
n=1 ∈ SA is

precisely
(Rnqn(t, ξ

0)e−nt)∞n=1.

We denote this solution by Snormal(t)ξ
0.

Next, we investigate the convergence of the asymptotic expansion. We introduce
and make use of the following construction of regular solutions. It is motivated by
the asymptotic expansion itself.

We decompose the initial data u0 in V as

u0 =
∞∑

n=1

u0n. (5.8)

We find the solution u(t) of the form

u(t) =
∞∑

n=1

un(t), (5.9)

where for each n,
dun(t)

dt
+Aun(t) +Bn(t) = 0, t > 0, (5.10)
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with initial condition
un(0) = u0n, (5.11)

where
B1(t) ≡ 0, Bn(t) =

∑
j+k=n

B(uj(t), uk(t)) for n > 1.

System (5.10) will be called the extended NSE. We denote by Sext(t) the semi-
group generated by solutions of this system.

It turns out that such a construction (5.8)–(5.11), indeed, produces regular
solutions of the form (5.9) for NSE with the initial condition (5.8). The following
existence theorem is a special case of Corollary 3.5 [25] with specific parameter
ρ0 > 1 = ρ.

Theorem 5.4 ( [25, Corollary 3.5]). Let (u0n)
∞
n=1 be a sequence in V such that

lim sup
n→∞

∥∥u0n∥∥1/n < 1.

Let (un(t))
∞
n=1 be the solutions to (5.10) and (5.11). Then there exists T > 0 such

that u(t)
def
=

∑∞
n=1 un(t) is the regular solution of the NSE on [0, T ) with initial data

u0 =
∑∞

n=1 u
0
n.

We now make the connections between the solutions of the extended NSE with
the asymptotic expansions of solutions of NSE.

If a regular solution u(t) has the expansion
∑∞

n=1Wn(t, u
0)e−nt, then formally

we wish for

u0 =

∞∑
n=1

Wn(0, u
0).

Therefore, we set u0n =Wn(0, u
0) in the extended NSE. Then solutions un(t) of

the extended NSE are exactly Wn(t, u
0)e−nt. Hence, conclusion in Theorem 5.4 on

un(t), helps us make conclusion on
∑∞

n=1Wn(t, u
0)e−nt.

Notation. For u0 ∈ R, we denote by u(t, u0) the regular solution of NSE on [0,∞)
with initial data u(0) = u0.

First, we have a small initial data result.

Theorem 5.5 ( [25, Theorem 5.3]). There exists ε0 > 0 such that if u0 ∈ R with

∞∑
n=1

∥∥Wn(0, u
0)
∥∥ < ε0, (5.12)

then
∑∞

n=1Wn(t, u
0)e−nt converges in V for all t > 0 to the regular solution u(t, u0).

Second, we have a large time result for large initial data.

Theorem 5.6 ( [25, Theorem 5.10]). Suppose u0 ∈ R and

lim sup
n→∞

∥∥Wn(0, u
0)
∥∥1/n <∞. (5.13)

Then there exists T > 0 such that the function v(t)
def
=

∑∞
n=1Wn(t, u

0)e−nt is
absolutely convergent in V, uniformly in t ∈ [T,∞), the series

∑∞
n=1Wn(t, u

0)e−nt

is the asymptotic expansion of v(t), and v(t) = u(t, u0) for all t ∈ [T,∞).
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Note in Theorem 5.6 that it is not known whether the sum
∑∞

n=1Wn(t, u
0)e−nt

converges to a solution in short time.
Although the conclusions in Theorems 5.5 and 5.6 are satisfactory, it is not

known whether the condition (5.12) or (5.13) holds true for a non-zero u0. At the
moment, we do not know whether

∑∞
n=1Wn(0, u

0) and
∑∞

n=1Wn(t, u
0) converge

in V , i.e., with respect to the norm ∥ · ∥. However, one may hope to obtain some
convergence in weaker norms. Therefore, we study, in the following, the asymptotic
expansions with a different approach, which uses suitable weighted normed spaces.

Let V∞ = V ⊕ V ⊕ V ⊕ . . .. Define

W (t, ·) : u ∈ R 7→ (Wn(t, u)e
−nt)∞n=1 ∈ V∞,

Q(t, ·) : ξ̄ ∈ SA 7→ (qn(t, ξ̄)e
−nt)∞n=1 ∈ V∞.

We now proceed to the construction of the normed spaces.

Definition 5.1 (Fast decaying weights). Let (κ̃n)
∞
n=2 be a fixed sequence of real

numbers in the interval (0, 1] satisfying

lim
n→∞

(κ̃n)
1/2n = 0.

We define the sequence of positive weights (ρn)
∞
n=1 by

ρ1 = 1, ρn = κ̃nγnρ
2
n−1, n > 1,

where γn ∈ (0, 1] are known and decrease to zero faster than n−n.

For ū = (un)
∞
n=1 ∈ V∞, let ∥ū∥⋆ be defined by the formula (5.5). Define the

spaces
V ⋆ = { ū ∈ V∞ : ∥ū∥⋆ <∞} and S⋆

A = SA ∩ V ⋆.

Clearly (V ⋆, ∥ · ∥⋆) and (S⋆
A, ∥ · ∥⋆) are Banach spaces.

It turns out that the extended NSE is well-posed in the space V ⋆.

Theorem 5.7 ( [25, Theorem 4.3]). If ū0 ∈ V ⋆, then Sext(t)ū
0 ∈ V ⋆ for all t > 0.

More precisely, ∥∥Sext(t)ū
0
∥∥
⋆
≤Me−t, t > 0,

where M > 0 depends on ρn, κn and
∥∥ū0∥∥

⋆
.

Theorem 5.8 ( [26, Theorem 3.8]). For each t ∈ [0,∞), Sext(t) is continuous from
V ⋆ to V ⋆. More precisely, for any ū0 ∈ V ⋆ and ε > 0, there is δ > 0 such that∥∥Sext(t)v̄

0 − Sext(t)ū
0
∥∥
⋆
< εe−t,

for all v̄0 ∈ V ⋆ satisfying
∥∥v̄0 − ū0

∥∥
⋆
< δ and for all t ≥ 0.

As for the normal form and normalization map, one obtains the following well-
posedness and continuity results.

Theorem 5.9 ( [26, Theorem 4.1]). Let ξ̄ = (ξn)
∞
n=1 ∈ S⋆

A. Then Snormal(t)ξ̄ ∈ S⋆
A

for all t ≥ 0. Moreover, ∥∥Snormal(t)ξ̄
∥∥
⋆
≤Me−t, t > 0,

where M is a positive number depending on
∥∥ξ̄∥∥

⋆
and the sequence (ρn)

∞
n=1.
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Theorem 5.9 shows that the semigroup Snormal(t), t ≥ 0, generated by the solu-
tions of the normal form (5.7) leaves invariant the whole space S⋆

A. Furthermore,
one can establish the continuity (but not necessarily Lipschitz continuity) of each
Snormal(t) as a map form S⋆

A to S⋆
A.

Theorem 5.10 ( [26, Theorem 4.2] and [25, Theorem 7.4]). For each t ≥ 0, the
map

ξ̄ ∈ S⋆
A 7→ Snormal(t)ξ̄ ∈ S⋆

A is continuous.

In particular, there exists ε0 > 0 such that if ξ̄, χ̄ ∈ S⋆
A and

∥∥ξ̄∥∥
⋆
, ∥χ̄∥⋆ < ε0, then

∥∥Snormal(t)ξ̄ − Snormal(t)χ̄
∥∥
⋆
≤ 4e1/8e−t

∥∥ξ̄ − χ̄
∥∥
⋆

∀t ≥ 0.

According to Theorem 5.10, the normal form (5.7) is a well-posed system of
ODEs in the infinite dimensional Banach space S⋆

A.

Theorem 5.11 ( [26, Theorems 5.9 and 5.21]). The normalization map W is a
continuous function from R to S⋆

A.

We summarize our results stated above in the commutative diagram (Figure 1)
in which all mappings are continuous.

R

W (0, ·)

����
��
��
��
��
��
��
��
��
��
��
��
��
�

W (·)

��

S(t)
// R

W (·)

��
W (0, ·)

��0
00
00
00
00
00
00
00
00
00
00
00
00
00

S⋆
A

Q(0, ·)
~~}}
}}
}}
}}
}}
}}
}}
}

Snormal(t) // S⋆
A

Q(0, ·)
  A

AA
AA

AA
AA

AA
AA

AA

V ⋆
Sext(t) // V ⋆

Figure 1. Commutative diagram for mappings and spaces ( [26]).

The complete proofs of Theorems 5.9, 5.10 and 5.11 are lengthy and technical
and giving them exceeds the scope of this survey. We refer the reader to the papers
[25,26] for details. They involve the complexification of NSE and extended NSE, for
which the solutions are analytic in the complex time in a large domain of the form
(3.5) and (3.6). Using an appropriate transformation, see (3.7), to map this domain
to the right half plane, and utilizing some Phragmen-Linderlöff estimates, we can
obtain recursive estimates for each step Wn(u

0), qn(0,W (u0)), qn(ζ,W (u0)), and
u(ζ)−

∑n
j=1 qj(ζ,W (u0))e−jζ for complex time ζ. They, of course, depend on the

weights ρn’s. Then the sum, say,
∑∞

n=1 ρn∥qn(0,W (u0))∥ is convergent when ρn’s
are chosen specifically and decay to zero extremely fast.
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6. Navier and Stokes meet Poincaré and Dulac

It was not totally clear that the normal form theory for the NSE derived in section
5 could be related to the Poincaré-Dulac theory presented in section 4. It turns out
to be the case, at least in the periodic case.

We consider thus the periodic case and use the same notation as in subsection
5.3.

In that subsection, (5.7) is a normal form of NSE in a suitable Banach space
S⋆
A. This space, however, is too big to make a link with the concrete (formal series)

approach of the Poincaré-Dulac theory. Such link was finally established in [27]. In
short,

• The system (5.7), indeed, provides a Poincaré-Dulac normal form of the NSE,
and is obtained by a (formal) explicit change of variables. The change of
variables is a formal series expansion of the inverse of the normalization map
W .

• Each homogeneous term in the formal series is well-defined in suitable Sobolev
spaces.

We present below the precise results and provide main ideas and techniques in
their proofs.

The following topological vector space will be essential in our study

E∞ = C∞(R3,R3) ∩ V ⊂ SA. (6.1)

It is endowed with the topology generated by the family of norms |Aα · | for all
α ≥ 0.

First, we give an explicit definition of a normal form for the NSE, which is an ana-
logue to classical ones by Poincaré and Dulac reviewed in section 4. We start with
homogeneous polynomials and resonant monomials in infinite-dimensional spaces.

Definition 6.1. Let Q ∈ H[d](E∞), the space of homogeneous polynomials in ξ ∈
E∞ of order d. Then Q(ξ) (ξ ∈ E∞ and ξj = Rjξ, j ∈ N), is a monomial of degree
αki > 0 in ξki where i = 1, 2, . . . ,m, αk1 + . . .+ αkm = d and k1 < k2 < . . . < km ,
if it can be represented as

Q(ξ) = Q̃(ξk1 , . . . , ξk1︸ ︷︷ ︸
αk1

, ξk2 , . . . , ξk2︸ ︷︷ ︸
αk2

, . . . , ξkm , . . . , ξkm︸ ︷︷ ︸
αkm

), (6.2)

where Q̃(ξ(1), ξ(2), . . . , ξ(d)) is a continuous d-linear map from (E∞)d to E∞.
The monomial Q(ξ) defined by (6.2), with degree d ≥ 2, is called resonant if

m∑
i=1

αkiki = j and Q = RjQ ̸= 0.

Although the definition of resonant monomials in Definition 6.1 is more abstract
than that in Definition 4.1, they are essentially the same, see details in [27, Lemmas
4.4 and 4.6].
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Definition 6.2. A differential equation in an infinite dimensional space E

dξ

dt
+Aξ +

∞∑
d=2

Φ[d](ξ) = 0 (6.3)

is a Poincaré–Dulac normal form for the NSE if

(i) Each Φ[d] belongs to H[d](E), the space of homogeneous polynomials of order

d, and Φ[d](ξ) =
∑∞

k=1 Φ
[d]
k (ξ), where all Φ

[d]
k ∈ H[d](E) are resonant mono-

mials,

(ii) Equation (6.3) is obtained from NSE by a formal change of variable

u =

∞∑
d=1

Ψ[d](ξ), where Ψ[d] ∈ H[d](E). (6.4)

To establish a normal form theory for the NSE, according to Definition 6.2, we
need to identify the framework E, the normal form (6.3), and the formal change of
variable (6.4).

The framework. We will use the space E∞ defined by (6.1).

The normal form. The natural candidate for the normal form is (5.7). However,
we must rewrite it in the power series form.

Let P [d]
j (ξ) and B[d]

j (ξ) denote the sum of all homogeneous monomials of degree d

of Pj(ξ) and Bj(ξ), respectively. Then the series
∑

j P
[d]
j (ξ) and

∑
j B

[d]
j (ξ) converge

in E∞ to continuous polynomials P [d](ξ) and B[d](ξ), respectively, see Theorem 6.2
below.

The system (5.7) is rewritten in the formal power series as

dξ

dt
+Aξ +

∞∑
d=2

B[d](ξ) = 0. (6.5)

Inheriting the spectral property (5.4), each polynomial B[d](ξ) in (6.5) can be
verified to be resonant. Hence, system (6.5) is a potential Poincaré-Dulac normal
form, except that it is missing a power series change of variable.

The formal change of variable. We already know that NSE reduces to (6.5) by
the transformation ξ = W (u). Therefore, u should be W−1(ξ). Of course, W−1 is
not rigorously defined on E∞ and, additionally, not expressed in the power series
form. To resolve these, we heuristically argue that

u =
∞∑
j=1

qj(0, ξ) =
∞∑
j=1

j∑
d=1

q
[d]
j (0, ξ) =

∞∑
d=1

∞∑
j=d

q
[d]
j (0, ξ) =

∞∑
d=1

P [d](ξ).

Note that P [1](ξ) = ξ. Thus, the formal change of variable would be

u = ξ +

∞∑
d=2

P [d](ξ). (6.6)

The change of variable (6.6) is considered as the formal inverse of the normal-
ization map W .

It turns out that, these arguments can be made rigorous and we obtain the
following result.
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Theorem 6.1 ( [27, Theorem 4.9]). The system (6.5) is a Poincaré-Dulac normal
form in E∞ for the NSE (1.5), and is obtained by the formal change of variable
(6.6).

The proof of Theorem 6.1 relies on recursive formulas giving the homogeneous
terms of the normal form. The main tool to estimate their Sobolev norms is the
following family of homogeneous gauges [[ξ]]d,n.

We introduce the set of general multi-indices GI =
∪∞

n=1GI(n) where for n ≥ 1,

GI(n) =
{
ᾱ = (αk)

∞
k=1, αk ∈ {0, 1, 2, . . .}, αk = 0 for k > n or k ̸∈ σ(A)

}
.

For ᾱ ∈ GI, define

|ᾱ| =
∞∑
k=1

αk and ∥ᾱ∥ =
∞∑
k=1

kαk.

Definition 6.3 (Homogeneous gauges). Let ξ = (ξk)
∞
k=1 ∈ SA and ᾱ = (αk)

∞
k=1 ∈

GI, define [
ξ
]ᾱ

=
∏

αk>0

|ξk|αk .

For n ≥ d ≥ 1, define

[[ ξ ]]d,n =

 ∑
|ᾱ|=d,∥ᾱ∥=n

[
ξ
]2ᾱ1/2

.

One can easily compare [[ ξ ]]d,n with the usual norm |ξ| by

[[ ξ ]]d,n ≤
( ∑

ᾱ∈GI(n),|ᾱ|=d

[
ξ
]2ᾱ)1/2

≤ |Pnξ|d.

Moreover, one has the following multiplicative and Poincaré inequalities.

Lemma 6.1 ( [27, Lemma 2.1]). Let ξ ∈ SA, n ≥ d ≥ 1 and n′ ≥ d′ ≥ 1. Then

[[ ξ ]]d,n · [[ ξ ]]d′,n′ ≤ ed+d′
[[ ξ ]]d+d′,n+n′ . (6.7)

Note that the constant on the right-hand side of (6.7) is independent of n, n′.

Lemma 6.2 ( [27, Lemma 2.2]). For any ξ ∈ SA, any numbers α, s ≥ 0 and
n ≥ d ≥ 1, one has

[[Aαξ ]]d,n ≤
(
d

n

)s [[
Aα+sξ

]]
d,n

≤
(
d

n

)s

|PnA
α+sξ|d.

The main advantage of the gauges [[ · ]]d,n is that they efficiently track the norm
contribution of each variable in estimates of homogeneous polynomials. It leads to
simple and convenient bounds, see (6.12) below, for recursively defined, complicated

P [d]
j (ξ) and B[d]

j (ξ).

Convergence of homogeneous polynomials. For d ≥ 1, let

P [d](ξ) =
∞∑
j=d

P [d]
j (ξ) =

∞∑
j=d

q
[d]
j (0, ξ), (6.8)
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and d ≥ 2, let

B[d](ξ) =
∞∑
j=1

B[d]
j (ξ) =

∞∑
j=1

∑
k+l=j

∑
m+n=d

RjB
(
P [m]
k (ξ),P [n]

l (ξ)
)
. (6.9)

Theorem 6.2 ( [27, Theorems 3.4 and 3.5, Lemma 4.1]). Let α ≥ 1/2. Then
P [d](ξ), defined in (6.8) for d ≥ 1, and B[d](ξ), defined in (6.9) for d ≥ 2, are
continuous homogeneous polynomials from D(Aα+3d/2) to D(Aα), and satisfy

|AαP [d](ξ)| ≤
∞∑
j=d

|AαP [d]
j (ξ)| ≤M(α, d)|Aα+3d/2ξ|d, (6.10)

|AαB[d](ξ)| ≤
∞∑

n=1

|AαB[d]
n (ξ)| ≤ C(α, d)|Aα+3d/2ξ|d, (6.11)

for some positive constants M(α, d) and C(α, d).

Consequently, the series P [d](ξ) =
∑∞

j=d P
[d]
j (ξ) and B[d](ξ) =

∑∞
j=d B

[d]
j (ξ),

converge in E∞, and are continuous homogeneous polynomials of degree d from
E∞ to E∞.

Proof. By induction, ones first prove that

|AαP [d]
j (ξ)| ≤ c(α, d)

[[
Aα+ 3

2 (d−1)ξ
]]

d,j
. (6.12)

Then using inequality (6.2),

∞∑
j=1

|AαP [d]
j (ξ)| ≤

∞∑
j=d

c(α, d)
[[
Aα+(3/2)(d−1)ξ

]]
d,j

≤
∞∑
j=d

c(α, d)
(d
j

)3/2

|Aα+(3/2)(d−1)+3/2ξ|d =M(α, d)|Aα+3d/2ξ|d,

which proves (6.10). Inequality (6.11) for B[d](ξ) is proved similarly.

Proof of Theorem 6.1. By virtue of Theorem 6.2, the ODE (6.5) and change
of variable (6.6) are meaningful in E∞ now. It still remains to prove that (6.5),
indeed, comes from NSE and (6.6). One can derive from NSE (1.5) the formal ODE
for ξ(t) under the transformation (6.6) as

dξ

dt
+

∞∑
d=1

Q[d](ξ) = 0, (6.13)

where Q[1](ξ) = Aξ and, for d ≥ 2,

Q[d](ξ) =
∑

k+l=d

B(P [k](ξ),P [l](ξ))−
∑

2≤k,l≤d−1
k+l=d+1

DP [k](ξ)(Q[l](ξ)) +H
(d)
A P [d](ξ),

with
H

(d)
A P [d](ξ) = AP [d](ξ)−DP [d](ξ)Aξ
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being the Poincaré homology operator.
It turns out that, see [27, Proposition 4.7],

Q[d](ξ) = B[d](ξ) for all ξ ∈ E∞, d ≥ 2.

Therefore, the transformed system (6.13) is the same as (6.5) whose resonance
conditions are already met. This implies that (6.5) is a Poincaré-Dulac normal form
of the NSE (1.5) by the change of variable (6.6).

7. Final comments

7.1. Other related results

1. The recent paper [46] obtains the asymptotic expansion of the same type
for weak solutions of NSE in periodic domains with exponentially decaying
(non-potential) outer body forces satisfying an asymptotic expansion of the
type

f(t) ∼
∞∑

n=1

fn(t)e
−nt

in appropriate (Sobolev-Gevrey type) functional spaces. See also [12] for a
new result for power-decaying forces.

2. When Ω = Rn, because of lack of the Poincaré inequality, the situation is
drastically different and the decay rate is only algebraic. The techniques and
their proofs are quite different than those used for the bounded domains. We
refer to [4,5,38,58,67,72] and the references therein. In particular, Kukavica
and Reis ( [48]) obtain a precise space-time asymptotic of smooth solutions in
a weighted space.

3. Section 7 of [34] focuses on the viscous Burgers equation and the Minea system.
In the case of the viscous Burgers equation, the normalizing mapping W can
be explicitly computed in terms of the Cole-Hopf transform

4. The asymptotic expansion is also established for dissipative wave equations
by Shi in [69].

7.2. Some open issues

We indicate below a few open questions related to the topics considered in the
present paper.

1. The classical Poincaré-Dulac theory for ODEs has a second part concerning
the convergence of the formal series which give the change of variables, and
the convergence of the series in the normal form (see [1]). The extension of
these convergence results to the NSE seems to be an open problem.

2. Complete our knowledge of the normalization map and of the normal form.

3. What happens in 3D when the initial data u0 ∈ R is near the boundary ∂R
in case R ̸= V ?

4. It is very likely that the normal form theory studied here extends to the
NSE posed on a compact Riemann manifold (e.g. the Euclidean sphere in R3)
(see [39] for results on the asymptotic decay). In particular, all specific results
obtained in the periodic case should have a counterpart in this framework.
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Paris, 1889.

[66] G. Ponce, R. Racke, T. C. Sideris and E. S. Titi, Global stability of large
solutions to the 3D Navier-Stokes equations, Comm. Math. Phys., 1994, 159,
329–341.



Navier and Stokes meet Poincaré and Dulac 763

[67] M. E. Schonbek, Large time behavior of solutions to the Navier-Stokes equa-
tions, Comm. in PDE, 1986, 11, 733–763.

[68] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations,
Comm. Pure Appl. Math., 1985, 38(5), 685–696.

[69] Y. Shi, A Foias-Saut type of expansion for dissipative wave equations, Comm.
in PDE, 2000, 25(11–12), 2287–2331.

[70] R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, Providence, RI,
2001, Theory and numerical analysis, Reprint of the 1984 edition.

[71] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, Sec-
ond Edition, CBMS-NSF Regional Conference Series in Applied Mathematics,
Society for Industrial and Applied Mathematics, 1995.

[72] M. Wiegner, Decay and stability in Lp for strong solutions of the Cauchy
problem for the Navier-Stokes equations, in Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1990, 1431, 95–99.

[73] M. Q. Zhan, Selective decay principle for 2D magnetohydrodynamic flows,
Asymptot. Anal., 2010, 67(34), 125–146.

[74] M. Q. Zhan, Convergence of Dirichlet quotients and selective decay of 2D mag-
netohydrodynamic flows, J. Math. Anal. Appl., 2011, 380, 831–846.

[75] Q. S. Zhang, An example of large global smooth solution of 3 dimensional
Navier-Stokes equations without pressure, Discrete and Continuous Dynamical
Systems, 2013, 33(11–12), 5521–5523.


	Introduction and some historical tidbits
	The Navier-Stokes equations for viscous, incompressible fluid flows
	Functional setting
	Basic facts
	Aim and outline of the paper

	Limit of the Dirichlet quotients 
	The asymptotic expansion
	The non-resonant case
	The resonant case
	The asymptotic expansion in Gevrey spaces
	Application: asymptotic behavior of the helicity

	The Poincaré-Dulac theory of normal forms
	A normalization map and a normal form for NSE
	The non-resonant case
	The resonant case
	Further results in the 3D periodic case

	Navier and Stokes meet Poincaré and Dulac
	Final comments
	Other related results
	Some open issues


