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LOW-RANK AND SPARSE MATRIX
RECOVERY FROM NOISY OBSERVATIONS

VIA 3-BLOCK ADMM ALGORITHM

Peng Wang1,2,†, Chengde Lin1, Xiaobo Yang3

and Shengwu Xiong1,†

Abstract Recovering low-rank and sparse matrix from a given matrix arises
in many applications, such as image processing, video background substrac-
tion, and so on. The 3-block alternating direction method of multipliers
(ADMM) has been applied successfully to solve convex problems with 3-block
variables. However, the existing sufficient conditions to guarantee the conver-
gence of the 3-block ADMM usually require the penalty parameter γ to satisfy
a certain bound, which may affect the performance of solving the large scale
problem in practice. In this paper, we propose the 3-block ADMM to recover
low-rank and sparse matrix from noisy observations. In theory, we prove that
the 3-block ADMM is convergent when the penalty parameters satisfy a cer-
tain condition and the objective function value sequences generated by 3-block
ADMM converge to the optimal value. Numerical experiments verify that pro-
posed method can achieve higher performance than existing methods in terms
of both efficiency and accuracy.

Keywords Low-rank, sparse, nuclear norm minimization, ℓ1-norm minimiza-
tion, 3-block alternating direction method.
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1. Introduction
The low-rank and sparse matrix recovery problem arises widely in statistical model
selection, system identification, and machine learning, such as image recovery [11],
face recognition [20, 21] and background modeling [3, 12]. A central goal of the
problem is to decompose a given high-dimensional matrix C into a sum of a low
rank matrix A and a sparse matrix B. This can be mathematically formulated as

min
A,B

rank(A) + λ∥B∥0, s.t. A+B = C, (1.1)

where ∥ · ∥0 is l0 norm counting the number of nonzero entries, λ > 0 is the hyper-
parameter, and C ∈ Rm×n is the given matrix.
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However, the problem (1.1) is generally NP-hard due to the non-convexity and
non-smoothness of rank(·) and ∥ · ∥0. To overcome this difficulty, based on the fact
that the ℓ1 norm and the nuclear norm have been shown to be effective surrogate
for ∥ · ∥0 and rank(·) respectively [8], the problem (1.1) was often translated into
the convex relaxation formulation [4, 5, 18]:

min
A,B

∥A∥⋆ + λ∥B∥1, s.t. A+B = C, (1.2)

where ∥A∥⋆ =
∑n

i=1 σi(A) denotes the nuclear norm of matrix A. σi(A) is the ith
singular value of A, and ∥B∥1 =

∑
ij |Bij | denotes the ℓ1 norm of B vectorized as a

long vector in Rm×n. It has been shown that the above convex model can exactly
recover a low-rank matrix A and a sparse matrix B under some conditions [3].

When the observation matrix C is corrupted by Gaussian noise, problem (1.2) is
then formulated as the following nonsmooth convex optimization problem [13,23]:

min
A,B

∥A∥⋆ + λ∥B∥1, s.t. ∥C −A−B∥F ≤ δ, (1.3)

where δ > 0 is a constant to describe noise intensity.
For the convenience of optimization, problem (1.3) can be usually transformed

into its penalized form

min
A,B

∥A∥⋆ + λ∥B∥1 +
ρ

2
∥A+B − C∥2F , (1.4)

where ρ > 0 is a penalty parameter.
In practice, a more common formulation for the corrupted observations is often

expressed as
A+B +D = C,

where D denotes the random noise and ∥D∥F ≤ δ for some δ > 0. Therefore, the
original low-rank and sparse matrix decomposition can be formulated as

min
A,B,D

∥A∥⋆ + λ∥B∥1 +
ρ

2
∥D∥2F , s.t. A+B +D = C. (1.5)

In recent years, the two problems (1.2) and (1.3) have been proposed to extract
low-dimensional structure from a possibly noisy data matrix [3, 23]. The work [13]
has shown that accelerated proximal gradient (APG) method has impressive perfor-
mance for solving (1.4) as well as (1.2). A twisted version of proximal alternating di-
rection method of multipliers (TADMM) [19] was presented for recovering low-rank
and sparse matrix from noisy observation, and the convergence and effectiveness of
TADMM was also proved in the work. Alternating direction method of multipliers
(ADMM) [1, 5, 15, 18, 22] is another widely used approach to efficiently solve such
problems.

Optimizing the problem of recovering the low-rank and sparse matrix from noisy
observations (1.5) is a challenge task. In this work, we employ the 3-block ADMM
algorithm to solve (1.5). More importantly, we prove that the iterative sequence
generated by proposed algorithm converges to an optimal solution of (1.5) under
some mild conditions. Numerical experiments are executed to demonstrate the
superiority of the proposed method to some existing methods.

The rest of the paper is organized as follows. In section 2, we introduce some
notations and preliminaries which are necessary for our main results. Section 3
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describes the details of recovering low rank and sparse matrix from noisy observation
via 3-block ADMM. Section 4 analyzes the convergence properties of 3-block ADMM
for (1.5) and shows that the objective function value sequence generated by 3-block
ADMM algorithm converges to the optimal value. In Section 5, we compare 3-
block ADMM with some existing ADMM based algorithms to demonstrate the
performance of it. Finally, Section 6 concludes the paper.

2. Preliminaries and notations
In this section, we briefly introduce some notations and results on the shrinkage
operator, which are key to the forthcoming sections.

For matrices X and Y with the same size, the inner product in Rm×n is defined
as ⟨X,Y ⟩ = tr(XTY ) =

∑m
i=1

∑n
j=1 XijYij . The norm associated with this inner

product is called the Frobenius norm ∥ · ∥F . For symmetric and positive semi-
definite matrix P ⪰ 0, let ∥x∥2P = xTPx where x ∈ Rn. When P is the n × n
identity matrix, ∥ · ∥P denotes the ℓ2-norm ∥ · ∥2.

Lemma 2.1 ( [18]). For µ > 0 and Y ∈ Rm×n, the solution of the problem

min
X∈Rm×n

µ∥X∥1 +
1

2
∥X − Y ∥2F

is given by Sµ(Y ) ∈ Rm×n, which is defined component-wisely by

(Sµ(Y ))ij = max{abs(Yij)− µ, 0} · sign(Yij),

where abs(·) and sign(·) are absolute value and sign functions, respectively.

Lemma 2.2 ( [2]). Given a matrix Y ∈ Rm×n with rank(Y ) = r, let its Singular
Value Decomposition be Y = UY Diag({σi}1≤i≤r)V

T
Y , where UY ∈ Rm×r, VY ∈

Rn×r, and a scalar τ > 0. Then

X = Dτ (Y ) = UY Diag({σi − τ}+)V T
Y

is an optimal solution of the following problem

min
X∈Rm×n

τ∥X∥⋆ +
1

2
∥X − Y ∥2F ,

where plus function {·}+ is defined by a+ = max{a, 0} for a ∈ R.

3. The 3-block ADMM algorithm
The classical alternating direction method of multipliers (ADMM) is also called
2-block ADMM with two variables, which has been studied in the literature (see
[6, 7, 10]). The 3-block ADMM is extended from the classical ADMM for solving
the following convex problem:

min f1(x1) + f2(x2) + f3(x3),

s.t. A1x1 +A2x2 +A3x3 = y,

x1 ∈ χ1, x2 ∈ χ2, x3 ∈ χ3, (3.1)
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where xi ∈ Rni , Ai ∈ Rm×ni , y ∈ Rm, fi : Rni → (−∞,+∞] are closed proper
convex functions, and χi are closed convex sets for i = 1, 2, 3. For given (xk

2 , x
k
3 ;λ

k),
3-block ADMM for (3.1) can be summarized as

xk+1
1 = argminx1

Lβ(x1, x
k
2 , x

k
3 ;λ

k),

xk+1
2 = argminx2 Lβ(x

k+1
1 , x2, x

k
3 ;λ

k),

xk+1
3 = argminx3

Lβ(x
k+1
1 , xk+1

2 , x3;λ
k),

λk+1 = λk − β(
∑3

i=1 Aix
k+1
i − y),

(3.2)

where

Lβ(x1, x2, x3;λ) =

3∑
i=1

fi(xi)− ⟨λ,
3∑

i=1

Aixi − y⟩+ β

2
∥

3∑
i=1

Aixi − y∥22

denotes the augmented Lagrangian function of (3.1), λ is the Lagrange multiplier
and β > 0 represents a penalty parameter.

Though the convergence properties of the 2-block ADMM have been well-establis-
hed [10,16,17], the convergence of 3-block ADMM (3.2) has remained unclear for a
very long time. In recent work [6], a counterexample was given which showed that
without further conditions the 3-block ADMM may actually fail to converge. If all
the functions f1, f2 and f3 are strongly convex, Han et al. [9] proved the global
convergence of the 3-block ADMM (3.2). When the second block in the objective
function is a strongly convex function and constrained by one coupled linear equa-
tion, the work [14] presented a semi-proximal alternating direction of multiplier
(sP-ADMM) for the problem (3.1). Specifically, the iterative scheme was described
as follows: 

xk+1
1 = argminx1

Lβ(x1, x
k
2 , x

k
3 ;λ

k) + 1
2∥x1 − xk

1∥2P1
,

xk+1
2 = argminx2

Lβ(x
k+1
1 , x2, x

k
3 ;λ

k) + 1
2∥x2 − xk

2∥2P2
,

xk+1
3 = argminx3

Lβ(x
k+1
1 , xk+1

2 , x3;λ
k) + 1

2∥x3 − xk
3∥2P3

,

λk+1 = λk − γβ(
∑3

i=1 Aix
k+1
i − y),

(3.3)

where P1, P2, and P3 are positive semidefinite matrices, and γ > 0 is a step size for
the dual update. Moreover, for γ ∈ (0, (1+

√
5)/2) and β ∈ (0,+∞), the global con-

vergence of sP-ADMM was proved [14]. However, the above results usually require
some restrictive conditions on Pi, γ and β which may affect the performance of solv-
ing large-scale problem in practice. The 3-block ADMM for (3.1) was researched
under the conditions that Pi = 0, β > 0 and γ = 1 [15]. Moreover, they showed the
algorithm was convergent and effective with any penalty parameter β > 0 under no
additional assumptions.

This paper mainly considers the 3-block ADMM for recovering low rank and
sparse matrices from a given corrupted observation matrix expressed as (1.5). In
order to solve (1.5) by 3-block ADMM, we first consider its augmented Lagrangian
function

Lβ(A,B,D,Λ) = ∥A∥⋆ + λ∥B∥1 +
ρ

2
∥D∥2F − ⟨Λ, A+B +D − C⟩

+
β

2
∥A+B +D − C∥2F , (3.4)
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where Λ ∈ Rm×n is a Lagrange multiplier matrix, and β > 0 is the penalty param-
eter. The 3-block ADMM algorithm for recovering low-rank and sparse matrix is
then formulated as follows:

Ak+1 = argminA Lβ(A,Bk, Dk,Λk),

Bk+1 = argminB Lβ(Ak+1, B,Dk,Λk),

Dk+1 = argminD Lβ(Ak+1, Bk+1, D,Λk),

Λk+1 = Λk − β(Ak+1 +Bk+1 +Dk+1 − C).

This can be equivalently transformed into

0 ∈ ∂∥Ak+1∥⋆ − Λk + β(Ak+1 +Bk +Dk − C),

0 ∈ λ∂∥Bk+1∥1 − Λk + β(Ak+1 +Bk+1 +Dk − C),

ρDk+1 − Λk + β(Ak+1 +Bk+1 +Dk+1 − C) = 0,

Λk+1 = Λk − β(Ak+1 +Bk+1 +Dk+1 − C),

(3.5)

where ∂(·) denotes the subgradient of a convex function. Eq. (3.5) implies that the
equation Λk+1 = ρDk+1 holds, for any k ≥ 0.

The first-order optimal conditions for (3.5) are given by Ak+1, Bk+1 ∈ Rm×n

and

⟨Â−Ak+1, G1 − Λk + β(Ak+1 +Bk +Dk − C)⟩ ≥ 0, ∀ Â ∈ Rm×n, (3.6)
⟨B̂ −Bk+1, S1 − Λk + β(Ak+1 +Bk+1 +Dk − C)⟩ ≥ 0, ∀ B̂ ∈ Rm×n, (3.7)

where G1 ∈ ∂∥Ak+1∥⋆ and S1 ∈ ∂λ∥Bk+1∥1.
By Lemmas 2.1 and 2.2, (3.5) can be solved by

Ak+1 = Dτ (τΛk − (Bk +Dk − C)),

Bk+1 = Sλτ (τΛk − (Ak+1 +Dk − C)),

Dk+1 = 1
ρ+β [Λk − β(Ak+1 +Bk+1 − C)],

(3.8)

where τ = 1
β . Consequently, for the problem (1.5), there exists a saddle point

(A⋆, B⋆, D⋆,Λ⋆) satisfying the KKT conditions:

0 ∈ ∂∥A⋆∥⋆ − Λ⋆,

0 ∈ ∂λ∥B⋆∥1 − Λ⋆,

ρD⋆ − Λ⋆ = 0,

A⋆ +B⋆ +D⋆ − C = 0.

(3.9)

Based on the above analysis, we propose the algorithm for solving (1.5) which
is described in Algorithm 1.
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Algorithm 1 Low-rank and sparse matrix recovery via 3-block ADMM
Require: B1 ∈ Rm×n; D1 ∈ Rm×n; Λ1 ∈ Rm×n; β, λ, ρ ∈ R.
Ensure: low-rank matrix Ak and sparse matrix Bk.

1: repeat
2: Ak+1 = Dτ (τΛk − (Bk +Dk − C)), where τ = 1

β ;
3: Bk+1 = Sλτ (τΛk − (Ak+1 +Dk − C));
4: Dk+1 = 1

ρ+β [Λk − β(Ak+1 +Bk+1 − C)];
5: Λk+1 = Λk − β(Ak+1 +Bk+1 +Dk+1 − C);
6: until the convergence condictions are not satisfied.

4. Convergence of the proposed 3-block ADMM
In this section, we will show the convergence of Algorithm 1 for the problem (1.5).
The following identity will be used frequently,

⟨V1 − V2, V3 − V1⟩ =
1

2
(∥V2 − V3∥2F − ∥V1 − V2∥2F − ∥V1 − V3∥2F ). (4.1)

As a main result of proposed work, we first present the following theorem.

Theorem 4.1. Let sequence {(Ak, Bk, Dk,Λk)} be generated by Algorithm 1, β > ρ
where ρ and β are penalty parameters of the problem (1.4) and (1.5), respectively.
Then the sequence {Lβ(Ak, Bk, Dk,Λk)} is monotonically decreasing.

Proof. From (3.4), it follows that

Lβ(Ak, Bk, Dk,Λk)− Lβ(Ak+1, Bk, Dk,Λk)

= ∥Ak∥⋆ − ∥Ak+1∥⋆ − ⟨Λk, Ak −Ak+1⟩+
β

2
∥Ak +Bk +Dk − C∥2F

− β

2
∥Ak+1 +Bk +Dk − C∥2F

≥ ⟨G1, Ak −Ak+1⟩ − ⟨Λk, Ak −Ak+1⟩+ β⟨Ak −Ak+1, Ak+1 +Bk +Dk − C⟩

+
β

2
∥Ak −Ak+1∥2F

= ⟨Ak −Ak+1, G1 − Λk + β(Ak+1 +Bk +Dk − C)⟩+ β

2
∥Ak −Ak+1∥2F

≥ β

2
∥Ak −Ak+1∥2F , (4.2)

where G1 ∈ ∂∥Ak+1∥⋆, the first inequality is based on the property of convex
function and identity (4.1), and the second inequality is obtained by setting Â = Ak

from (3.6). Similarly,

Lβ(Ak+1, Bk, Dk,Λk)− Lβ(Ak+1, Bk+1, Dk,Λk)

= λ∥Bk∥1 − λ∥Bk+1∥1 − ⟨Λk, Bk −Bk+1⟩+
β

2
∥Ak+1 +Bk +Dk − C∥2F

− β

2
∥Ak+1 +Bk+1 +Dk − C∥2F

≥ ⟨S1, Bk −Bk+1⟩ − ⟨Λk, Bk −Bk+1⟩+ β⟨Bk −Bk+1, Ak+1 +Bk+1 +Dk − C⟩
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+
β

2
∥Bk −Bk+1∥2F

= ⟨Bk −Bk+1, S1 − Λk + β(Ak+1 +Bk+1 +Dk − C)⟩+ β

2
∥Bk −Bk+1∥2F

≥ β

2
∥Bk −Bk+1∥2F , (4.3)

where S1 ∈ ∂λ∥Bk+1∥1. The first inequality is from the property of convex function
and identity (4.1), and the second inequality is obtained by setting B̂ = Bk from
(3.7). By (3.5) and (4.1), we obtain

Lβ(Ak+1, Bk+1, Dk,Λk)− Lβ(Ak+1, Bk+1, Dk+1,Λk)

=
ρ

2
∥Dk∥2F − ρ

2
∥Dk+1∥2F + ⟨Dk+1 −Dk,Λk⟩+

β

2
∥Ak+1 +Bk+1 +Dk − C∥2F

− β

2
∥Ak+1 +Bk+1 +Dk+1 − C∥2F

=
ρ

2
∥Dk∥2F − ρ

2
∥Dk+1∥2F + ⟨Dk+1 −Dk,Λk − β(Ak+1 +Bk+1 +Dk+1 − C)⟩

+
β

2
∥Dk −Dk+1∥2F

=
β + ρ

2
∥Dk −Dk+1∥2F . (4.4)

Combining (4.2), (4.3) and (4.4), we have

Lβ(Ak, Bk, Dk,Λk)− Lβ(Ak+1, Bk+1, Dk+1,Λk)

≥ β

2
∥Ak −Ak+1∥2F +

β

2
∥Bk −Bk+1∥2F +

β + ρ

2
∥Dk −Dk+1∥2F . (4.5)

From (3.5) and Λk+1 = ρDk+1, we get

Lβ(Ak+1, Bk+1, Dk+1,Λk)− Lβ(Ak+1, Bk+1, Dk+1,Λk+1)

= ⟨Λk+1 − Λk, Ak+1 +Bk+1 +Dk+1 − C⟩

= ⟨Λk+1 − Λk,
1

β
(Λk − ρDk+1)⟩

= − 1

β
∥Λk+1 − Λk∥2F = −ρ2

β
∥Dk −Dk+1∥2F . (4.6)

By (4.5) and (4.6), we obtain

Lβ(Ak, Bk, Dk,Λk)− Lβ(Ak+1, Bk+1, Dk+1,Λk+1)

≥ β

2
∥Ak −Ak+1∥2F +

β

2
∥Bk −Bk+1∥2F +

β + ρ

2
∥Dk −Dk+1∥2F

− ρ2

β
∥Dk −Dk+1∥2F

=
β

2
∥Ak −Ak+1∥2F +

β

2
∥Bk −Bk+1∥2F +

(β + ρ

2
− ρ2

β

)
∥Dk −Dk+1∥2F . (4.7)

Since β ∈ (ρ,+∞), we have β+ρ
2 − ρ2

β > 0. From the above inequality, it follows
that the sequence {Lβ(Ak, Bk, Dk,Λk)} is monotonically decreasing. The proof is
completed.
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Based on Theorem 4.1, the convergence of the sequence {(Ak, Bk, Dk,Λk)} gen-
erated by Algorithm 1 can be achieved by the following theorem.

Theorem 4.2. Let the sequence {(Ak, Bk, Dk,Λk)} be generated by Algorithm 1,
and β > ρ, then {(Ak, Bk, Dk,Λk)} is bounded, and any of its accumulation point
(A⋆, B⋆, D⋆,Λ⋆) is an optimal solution of (1.5).

Proof. First, we will show that the augmented Lagrangian function has a lower
bound.

Lβ(Ak+1, Bk+1, Dk+1,Λk+1)

= ∥Ak+1∥⋆ + λ∥Bk+1∥1 +
ρ

2
∥Dk+1∥2F − ⟨Λk+1, Ak+1 +Bk+1 +Dk+1 − C⟩

+
β

2
∥Ak+1 +Bk+1 +Dk+1 − C∥2F

= ∥Ak+1∥⋆ + λ∥Bk+1∥1 +
1

2ρ
∥Λk+1 − ρ(Ak+1 +Bk+1 +Dk+1 − C)∥2F

+
β − ρ

2
∥Ak+1 +Bk+1 +Dk+1 − C∥2F

≥ 0, (4.8)

where the second equality holds from the fact that Λk+1 = ρDk+1 and the inequality
is obtained by β > ρ. By Theorem 4.1 and (4.8), we conclude the convergence of
{Lβ(Ak, Bk, Dk,Λk)}.

Combining (4.7) and (4.8), for any k > 0, it follows that
k∑

i=1

(
β

2
∥Ai −Ai+1∥2F +

β

2
∥Bi −Bi+1∥2F +

(β + ρ

2
− ρ2

β

)
∥Di −Di+1∥2F

)

≤
k∑

i=1

(
Lβ(Ai, Bi, Di,Λi)− Lβ(Ai+1, Bi+1, Di+1,Λi+1)

)
= Lβ(A1, B1, D1,Λ1)− Lβ(Ak+1, Bk+1, Dk+1,Λk+1)

≤ Lβ(A1, B1, D1,Λ1), (4.9)

where β+ρ
2 − ρ2

β > 0.
Taking limit over the sequence in (4.9) and letting k → +∞, we have

∞∑
i=1

(
β

2
∥Ai −Ai+1∥2F +

β

2
∥Bi −Bi+1∥2F +

(β + ρ

2
− ρ2

β

)
∥Di −Di+1∥2F

)
< ∞.

The above inequality implies that

lim
k→∞

(
β

2
∥Ak −Ak+1∥2F +

β

2
∥Bk −Bk+1∥2F +

(β + ρ

2
− ρ2

β

)
∥Dk −Dk+1∥2F

)
= 0.

(4.10)
From (4.8), we obtain

Lβ(Ak+1, Bk+1, Dk+1,Λk+1) ≥ ∥Ak+1∥⋆ + λ∥Bk+1∥1.

Since sequence {Lβ(Ak, Bk, Dk,Λk)} is convergent and bounded, the sequence
{(Ak+1, Bk+1} is also bounded. By (3.8) and Λk+1 = ρDk+1, we can conclude that
{(Dk+1,Λk+1)} is a bounded sequence. Therefore, {(Ak, Bk, Dk,Λk)} is bounded.
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Furthermore, there exists a convergent subsequence {(Akj
, Bkj

, Dkj
,Λkj

)} such
that

lim
j→∞

Akj
= Ā, lim

j→∞
Bkj

= B̄, lim
k→∞

Dkj
= D̄.

By (4.10), we have

lim
j→∞

Akj+1 = lim
j→∞

(
Akj+1 − (Akj − Ā)

)
= Ā. (4.11)

Similarly,

lim
j→∞

Bkj+1 = B̄, lim
j→∞

Dkj+1 = D̄, lim
j→∞

Λkj+1 = Λ̄. (4.12)

Consequently, we can concluded that

lim
k→∞

Lβ(Ak, Bk, Dk,Λk) = Lβ(Ā, B̄, D̄, Λ̄). (4.13)

From (3.5), (4.10), (4.11), and (4.12), we obtain

lim
j→∞

∥Λkj
− Λkj+1∥F = lim

j→∞
ρ∥Dkj

−Dkj+1∥F

= lim
k→∞

β∥Akj+1 +Bkj+1 +Dkj+1 − C∥F

= ∥Ā+ B̄ + D̄ − C∥F = 0, (4.14)

and

0 ∈ ∂∥Akj+1∥⋆ − Λkj
+ β(Akj+1 +Bkj+1 +Dkj+1 − C) + β(Bkj

−Bkj+1)

+ β(Dkj
−Dkj+1). (4.15)

Taking over the limit of (4.15) for j → ∞, we have

0 ∈ ∂∥Ā∥⋆ − Λ̄. (4.16)

Similarly,

0 ∈ ∂∥B̄∥1 − Λ̄, and 2ρD̄ − Λ̄ = 0. (4.17)

Combining (4.14), (4.16) and (4.17), (Ā, B̄, D̄, Λ̄) satisfies the optimal conditions for
(1.5), and is an optimal solution of (1.5). Letting (Ā, B̄, D̄, Λ̄) = (A⋆, B⋆, D⋆,Λ⋆),
thus we complete the proof.

From Theorem 4.2, if (A⋆, B⋆, D⋆,Λ⋆) is an optimal solution of (1.5), the optimal
s of the objective function on the problem (1.5) can be denoted as f⋆, and f⋆ =
∥A⋆∥⋆ + λ∥B⋆∥1 + ρ

2∥D
⋆∥2F . Therefore, the sequence of objective function value

converges to the optimal value.

Corollary 4.1. Let the sequence {(Ak, Bk, Dk,Λk)} be generated by Algorithm 1.
Then the sequence of objective function value converges to the optimal value, i.e.

lim
k→∞

(
∥Ak∥⋆ + λ∥Bk∥1 +

ρ

2
∥Dk∥2F

)
= f⋆,

and

lim
k→∞

(Ak +Bk +Dk) = C.
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Proof. From (3.5) and Theorem 4.2, it follows that

∥Ak +Bk +Dk − C∥F =
1

β
∥Λk−1 − Λk∥F → 0, (4.18)

when k → 0. By (4.13) and (4.18), we have∣∣∥Ak∥⋆ + λ∥Bk∥1 +
ρ

2
∥Dk∥2F − f⋆

∣∣
≤

∣∣Lβ(Ak, Bk, Dk,Λk)− Lβ(A
⋆, B⋆, D⋆,Λ⋆)

∣∣+ ∥Λk∥F · ∥Ak +Bk +Dk − C∥F

+
β

2
∥Ak +Bk +Dk − C∥2F → 0, for k → ∞.

Thus the proof is concluded.

5. Experiments
In this section, we present several numerical experiments to demonstrate the effec-
tiveness of Algorithm 1. All the algorithms are implemented by Matlab R2015a,
and are tested on a PC with 4 GB RAM and Intel Core i5-3550 CPU.

5.1. Background subtraction from video
Background subtraction which aims to detect the moving objects from the back-
ground of a video stream is an important research field of computer vision. The
background subtraction is usually modeled as a matrix decomposition problem. In
this case, the background of each frame is relatively invariant while the foreground
moving objects are sparse. Therefore, the background subtraction problem can be
modeled as the low-rank and sparse structure as problem (1.5). As a result, 3-block
ADMM can be employed to solve the problem (1.5) and eventually separate the
background and foreground objects.

In this experiment, a surveillance video consisting of a static background and a
number of people moving in the foreground is used to test the algorithm. The video
is captured from an airport, which is composed of 200 frames with the resolution
144× 176. Each frame is then stacked into a vector and the video is converted as a
matrix A with the size of 25344× 200.

To execute the experiment, some experimental settings are listed as follows. The
parameters λ and ρ are selected by trail and error method and set as λ = 8, ρ = 100.
C (Sample) is original frame or observation, and D(noise) = C − A− B, where A
(Low-rank) and B (Sparse) are, respectively, the background and the foreground
that will be separated. We only take four frames of the video as an example and
show the decomposition results in Figure 1. Figure 1 illustrates that the proposed
method can successfully separate the background and the moving objects of all the
four scenes.

5.2. Matrix recovery
In this section, we provide numerical tests for matrix recovery task and compare
the 3-block alternating direction method (3b-ADMM) with some other algorithms,
including 3-block semi-proximal ADMM (3b-sPADMM) [14] and twisted version of
the proximal ADMM (TADMM) [19], for solving the problem (1.5).



1034 P. Wang, C. Lin, X. Yang & S. Xiong

(a) Background subtraction results of scene I.

(b) Background subtraction results of scene II.

(c) Background subtraction results of scene III.

(d) Background subtraction results of scene IV.

Figure 1. Background subtraction from surveillance videos of four different scenes via 3-block ADMM.

In this experiment, we generate the data in the same way as [22]. Let A⋆ and B⋆

are, respectively, the ground-truth of the low-rank and sparse matrices which will
be modeled and recovered by (1.5), r is the rank of matrix A⋆. More specifically,
the low-rank matrix A⋆ is generated by A⋆ = UV , where U = rand(m, r) and
V = rand(r, n). B⋆ is generated as B⋆ = zeros(m,n), p = randperm(m × n), L =
round(spr × m × n) and B⋆(p(1 : L)) = randn(L, 1), where spr is the sparsity
ratio, rand, randn, zeros, randperm and round are the corresponding MATLAB
functions. Let the noise D = 0.001 · rand(m,n) and let C = A⋆ +B⋆ +D, then we
obtain the observation C with noise.

In the following, we will recover the true matrices A⋆ and B⋆ from the observa-
tion C. Let ∥Ā−A⋆∥F

∥A⋆∥F
and ∥B̄−B⋆∥F

∥B⋆∥F
denote the relative error of low-rank matrix and

in sparse matrix, respectively. In our experiments, we set the parameter ρ = 1e+3,
β = 1e + 2, and the initial iteration (A0, B0, D0,Λ0) = (0, 0, 0, 0). The stopping
criterion of algorithms is achieved by using

∥(Ak, Bk)− (Ak+1 −Bk+1)∥
∥(Ak, Bk)∥F + 1

≤ ϵ,

where ϵ is tolerance.
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Figure 2 shows the convergent curves of the three algorithms with the parameters
setting as m = n = 100, rank=10, and a given noise D = 0.001 · rand(100, 100).
The sparsity ratio is set as 5%. It illustrates that the performance of 3b-sPADMM
and TADMM is roughly equal, while the 3b-ADMM converges much faster than
them. 3b-ADMM can achieve satisfying result at most 50 iterations.

Figure 2. The relative error of recovering sparse matrix and low-rank matrix via TADMM, 3b-ADMM
and 3b-sPADMM algorithm respectively.

Table 1. Numerical comparison of algorithms

Size Rank Spr Algorithm ∥Ā−A⋆∥F

∥A⋆∥F

∥B̄−B⋆∥F

∥B⋆∥F
Iter Time(s)

(200,200) 15 10% 3b-ADMM 6.11e-05 3.17e-05 45 3.2
3b-sPADMM 1.10-04 2.88e-05 1000 31.4

TADMM 1.30e-04 2.64e-05 770 25.2
(300,300) 20 5% 3b-ADMM 5.14e-05 2.60e-05 36 3.7

3b-sPADMM 1.03e-04 2.10e-05 789 62.2
TADMM 1.14e-04 1.66e-05 679 55.6

(400,400) 25 5% 3b-ADMM 4.11e-05 2.30e-05 46 7.8
3b-sPADMM 9.94e-05 2.21e-05 1000 162.1

TADMM 1.04e-04 1.66e-05 932 149.6

According to the data in Table 1, we can also observe that 3b-ADMM performs
the better among the tested algorithms in terms of both the accuracy and the speed.
Therefore, the proposed 3b-ADMM for solving the low-rank and sparse matrices
recovery problem has favorable numerical performance and converges faster than
some state-of-the-art algorithms.
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6. Conclusions
In this paper, we mainly emphasize the applicability of the 3-block alternating
direction method (ADMM) for solving the low-rank and sparse matrix recovery
problem from noisy observations, and show the convergence of 3-block ADMM
with a strongly convex block when the penalty parameters of the problem (1.5)
satisfy β > ρ. Our algorithm is successful to separate background and foreground
in video and recover the low-rank and sparse matrix. Moreover, numerical experi-
ments demonstrate the efficiency of the proposed method in comparison with several
existing algorithms, and our algorithm can spend less iteration and achieve higher
precision.
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